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Abstract— Recent efforts have witnessed remarkable progress
in satellite video super-resolution (SVSR). However, most SVSR
methods usually assume the degradation is fixed and known,
e.g., bicubic downsampling, which makes them vulnerable in
real-world scenes with multiple and unknown degradations.
To alleviate this issue, blind SR has, thus, become a research
hotspot. Nevertheless, the existing approaches are mainly engaged
in blur kernel estimation while losing sight of another critical
aspect for VSR tasks: temporal compensation, especially com-
pensating for blurry and smooth pixels with vital sharpness from
severely degraded satellite videos. Therefore, this article proposes
a practical blind SVSR algorithm (BSVSR) to explore more sharp
cues by considering the pixelwise blur levels in a coarse-to-fine
manner. Specifically, we employed multiscale deformable (MSD)
convolution to coarsely aggregate the temporal redundancy
into adjacent frames by window-slid progressive fusion. Then,
the adjacent features are finely merged into mid-feature using
deformable attention (DA), which measures the blur levels of
pixels and assigns more weights to the informative pixels, thus
inspiring the representation of sharpness. Moreover, we devise
a pyramid spatial transformation (PST) module to adjust the
solution space of sharp mid-feature, resulting in flexible feature
adaptation in multilevel domains. Quantitative and qualitative
evaluations on both simulated and real-world satellite videos
demonstrate that our BSVSR performs favorably against state-
of-the-art nonblind and blind SR models. Code will be available
at https://github.com/XY-boy/Blind-Satellite-VSR.

Index Terms— Blind super-resolution (SR), deformable atten-
tion (DA), multiple degradations, remote sensing, satellite video.

I. INTRODUCTION

VIDEO satellite has recently received increasing attention
due to its strength in dynamic observations. Nowadays,

satellite video imagery is widely used in remote sensing tasks
with high temporal variations [1], such as object tracking [2],
anomaly detection [3], [4], classification [5], [6], [7], [8], [9],
[10], change detection [11], and so on. However, the satellite
platform tremors and atmosphere scatters in the remote imag-
ing process often generate undesirable blurs in satellite videos.
In addition, the spatial resolution of satellite video is usually
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degraded to stabilize the remote transmission. As a result, the
visual quality of satellite video is inevitably contaminated,
which results in performance drops in subsequent applications.
Therefore, it is of practical significance to improve the spatial
resolution of satellite video for both human perception and
downstream tasks.

Compared with hardware upgrades, super-resolution (SR)
technology provides an optimal solution for this highly
ill-posed problem [12], [13], [14], [15], [16]. Traditional SR
methods [17] often employ handcrafted priors to make this
problem well posed. However, these methods are fragile to the
laborious priors and may restore unsatisfactory results, because
the real constraint often deviates from the predefined priors.
Besides, they also suffer from high-computational complexity
and can lead to suboptimal performance.

Benefitting from the development of deep neural net-
works (DNNs) [18], [19], [20], especially the huge success
in low-level vision tasks [21], [22], [23], [24], [25], the
deep-learning-based SR approaches are booming. In spite of
achieving decent results, most of them are specialized for
single and known degradation, e.g., bicubic downsampling,
and tend to collapse in real scene. Therefore, more efforts have
been paid to blind SR approaches, which address the SR prob-
lem under multiple and unknown degradations, e.g., unknown
blur kernels, and downsamplings. Recently, numerous works
have made promising progress on blind single-image SR
(SISR). However, they are less applicable in satellite videos,
as the additional information in the temporal domain is not
fully explored. More recently, some scholars have investigated
blind video SR (VSR). Nevertheless, these methods focus
solely on accurate blur kernel estimation while overlooking
the significance of temporal compensation in VSR, especially
precise compensation for blurry and smooth pixels in severely
degraded frames.

In general, the existing blind VSR approaches typically
utilize optical flow warping for temporal compensation. How-
ever, they are laborious in large-scale satellite imagery and
not robust in complex imaging scenarios with scale variations
and sparse motions. It is worse that, in blind SR settings, the
appearance of satellite video frames is severely blurred and
downsampled, which poses more challenges for accurate flow
estimation. Liu and Gu [26] proposed a joint estimation net-
work, which adopts patch matching to realize patch-by-patch
alignment. However, the patchwise alignment does not fully
exploit the subpixel redundancy. Moreover, the high-similarity
patch may also contain blurry pixels. Simply aggregating
them to mid-feature is not sophisticated to consider the blur
level of pixels, which may introduce and amplify the blurry
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information and restore unsatisfactory results. Overall, two
issues hinder us from moving forward.

1) The existing temporal compensation strategies are
time-consuming and not robust in severely degraded
satellite videos.

2) Lacking elaborate pixelwise temporal modeling to grasp
vital sharpness and eliminate unfavorable blurs.

Although the pixels may be degraded by the same degree
of blurring, they are still not equally informative to the
recovery of the clean and high-resolution (HR). Therefore,
we define sharp pixels as those that can provide more clean and
sharp cues (e.g., high-frequency texture), which are beneficial
to reconstruction. To address the issues mentioned above,
a more practical manner is urgently needed to consider the
blur level of pixels and explore more sharp and clean clues
for temporal compensation. Inspired by previous research,
deformable convolution (DConv) is a preferable choice in
satellite videos, as it benefits from adaptive pixelwise sampling
to mitigate the misalignment caused by inaccuracy optical
flow estimation. However, the learned pixels in deformable
sampling points are also blurry and not equally informative
for restoring sharp details. Very recently, [27] has investigated
the contribution of different sampling positions for efficient
spatial element relationship modeling. This motivates us to
model the different blurry levels of pixels with the equipment
of deformable attention (DA). Hence, we could effectively
aggregate the deformable sampling points by encouraging the
representation of sharp pixels and eliminating the effects of
blurry pixels.

In particular, this article proposes a novel approach
[blind satellite VSR (BSVSR)] to progressively aggregate
sharp information while considering the pixelwise blur level.
We adopt the efficient multiscale deformable (MSD) convolu-
tion alignment [28] to explore multiscale temporal redundancy
from the entire frame sequence with window-slid progressive
fusion. This helps to alleviate the alignment pressure brought
by large displacements. To finely aggregate the sharp mid-
feature, a multiscale DA module was proposed to measure the
pixelwise blur level, which is practical to assign more attention
to clean and sharp pixels for better sharpness representation.
Benefiting from the coarse-to-fine manner, we can favor-
ably identify the critical sharpness from severely blurred and
downsampled satellite videos. To flexibly adjust the solution
space and make the sharp mid-feature adaptive to various
degradation, a pyramid spatial transform (PST) strategy is
established. With pyramid design, we could improve the diver-
sity of mid-feature with multilevel spatial activation, making
the transformation aware of multiscale spatial distribution in
satellite videos.

In summary, our contributions are listed as follows.
1) Different from previous optical-flow-based and patch-

wise compensation methods, we propose to aggregate
sharp information in severely degraded satellite videos
with progressive temporal compensation, which exploits
MSD convolution and DA to explore more sharp and
clean clues by considering the blur level of pixels.

2) To achieve flexible feature adaptation, we develop
a robust PST module, where blur information could

be transformed into mid-feature in multilevel feature
domains.

3) Extensive experiments are conducted on Jilin-1,
Carbonite-2, UrtheCast, SkySat-1, and Zhuhai-1 video
satellites. Also, the results demonstrate that our BSVSR
performs favorably against state-of-the-art blind and
nonblind SR approaches.

The remainder of this article is organized as follows.
Section II reviews the progress of VSR. Section III involves
the details of our approach. Section IV includes extensive
experiments and analysis, and Section V is the conclusion.

II. RELATED WORK

A. Deep-Learning-Based Classical SR

We first review the classical SR, as it lays the foundation
of blind SR. Classical SR methods often assume that the
degradation process is single and known, such as bicubic
downsampling.

1) Classical SISR Methods: With the success of
SRCNN [29], CNN-based SISR methods have been
blooming, with remarkable progress in deeper networks [30],
attention-based networks [31], recurrent networks [32], and
recent popular transformer-based models [33], [34]. Although
they achieved decent results in bicubic-downsampled images,
they are not capable of handling multiple degradations. Also,
lacking consideration of temporal redundancy makes SISR
less generalized in VSR tasks.

2) Classical VSR Methods: The key success of VSR tasks
is to compensate the pixels of the mid-frame with the temporal
redundancy along frames. According to the type of temporal
compensation, classical VSR can be broadly divided into
flow-based and kernel-based compensation.

a) Flow-based compensation: These approaches [35],
[36], [37] employ explicit optical flow to describe the motion
relationships between frames and perform frame/featurewise
warping to align the adjacent frame to mid-frame. As men-
tioned in [26], optical flow estimation is time-consuming and
not robust in blurry and low-resolution videos. Thus, the
kernel-based method may provide a more efficient optimal for
VSR task, benefiting from its adaptive learning capability.

b) Kernel-based compensation: Such methods often
implicitly involve the compensation into learnable parameters.
Jo et al. [38] proposed to directly learn a 3-D upsampling
filter (DUF) to super-resolve each LR pixel. To reduce the
high-computational consumption of 3-D CNN, Tian et al. [39]
introduce an efficient deformable network to explore more
temporal priors with deformable sampling points. Later,
more efforts have been paid to generating precise offset
parameters for deformable sampling, such as pyramid [40]
and multiscale [41] architectures. Some works employ the
attention mechanism to find out valuable complementary.
Yu et al. [42] established a novel cross-frame nonlocal atten-
tion and memory-augment attention (MANA) to memorize
more details in mid-feature. Recently, some recurrent net-
works [43], [44] proposed to recurrently propagate temporal
information for better compensation.

Although kernel-based approaches could realize adaptive
compensation at the pixel level, they rarely consider the blur
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level of pixels and treat them equally, thus failing to find the
most useful sharp cues, which are beneficial to restoration.

B. Deep-Learning-Based Blind SR

Depending on whether apparent blur information is trans-
formed, these kinds of methods can be subdivided into explicit
and implicit blur transformation.

1) Explicit Blur Transformation: Early work [45] encoded
the explicit blur kernels into feature maps and simply con-
catenated them with LR features. However, they only allow
partial transformation. Later, [46] proposed a deep unfolding
SR network (USRNet), which transforms the blur kernel by
unfolding the optimization problem. To mitigate the perfor-
mance drop caused by the mismatch between the estimated
blur kernel and the realistic one, [47] established an iterative
kernel correct (IKC) network to adaptively refine the predicted
blur kernel. In addition, they further proposed a spatial fea-
ture transformation (SFT) layer to profoundly transform the
blur information into features for the adaptive SR process.
In particular, the blur kernel is exploited to guide the shift
and scaling of LR features, which helps the LR features to
adapt to a suitable domain for reconstruction. Currently, the
SFT layer has been commonly used for blur transformation.
However, it still lacks flexibility in modulating the spatial and
channel of deep features. Recently, Wang et al. [48] presented
a degradation-aware convolution (DAConv) to achieve deep
blur transformation in two branches. In spatial branches, they
use depthwise convolution to integrate the blur representations
into the LR feature. In the channel branch, channel attention
was introduced for channelwise modulation.

2) Implicit Blur Transformation: Such methods mainly
grasp implicitly learning the domain distribution from external
datasets. Jo et al. [49] implicitly learned an adaptive generator
(AdaTarget) to upsample LR images with diverse unknown
blur kernels. Similarly, some efforts [50], [51], [52] have been
made to achieve cross-domain learning with generative adver-
sarial networks (GAN). However, the implicit transformation
faces harsh convergence conditions, as GAN-based models are
easy to collapse and produce undesirable artifacts [53].

In summary, the explicit blur transformation is mainstream,
because they are straightforward and easy to train. Neverthe-
less, adapting the feature to a desired domain still remains a
challenging problem.

C. Blind SR for Satellite Video

Most early works are SISR approaches [54], [55], [56],
[57], [58]. However, their performance has reached a plateau
without exploring the temporal information. To grasp the
temporal redundancy in satellite videos [59], Liu et al. [60]
proposed a traditional VSR framework, which uses the nonlo-
cal temporal similarity as priors to constrain the solution space.
He et al. [61] employ 3-D convolution to achieve temporal
compensation, which is not elaborate in exploring the temporal
priors. Xiao et al. [28] developed a multiscale DConv for pre-
cise alignment and proposed a temporal grouping projection to
fuse the aligned features. To explore the spatial-temporal col-
laborative redundancy, they put forward a flow-DConv deeply

coupled strategy [62] and enhance the temporal information
by a spatial-temporal transformer. Recently, Jin et al. [63]
introduced both transformer and CNN to fully excavate the
local and global redundancy. Xiao et al. [64] developed a
novel framework that exploits temporal difference to real-
ize temporal compensation. Although these methods perform
favorably on bicubic-downsampled satellite videos, it is less
generalized in blind degradation settings, e.g., unknown blurs
and downsampling.

Toward this end, some blind SR approaches [65], [66] have,
thus, become a hot spot. Liu et al. [26] further proposed a
joint estimation network for collaborative optimization of blur
kernel estimation and SR process. He et al. [67] develop a
ghost-module network for BSVSR. However, they both lose
sight of precise temporal compensation in severely blurry and
low-resolution satellite videos. In fact, not all pixels are clean
and sharp and beneficial to blind VSR. Therefore, we still need
to move forward by compensating more clean and sharp cues
for blurry and smooth pixels.

III. METHODOLOGY

A. Degradation Formulation

Let I LR
t be the degraded mid-frame. The degradation process

of I LR
t can be formulated by the following:

I LR
t =

(
I GT
t ⊗ B

)
↓s + N (1)

where I GT
t represents the HR ground-truth mid-frame, B is a

2-D blur kernel filter, ⊗ means convolution, ↓s denotes spatial
downsampling operation with a scale factor of s, and N is the
noise term. Following previous works [26], this article only
focuses on blur and downsampling degradations, which means
N = 0. Also, we set B to isotropic Gaussian blur kernel and
↓s to ×s bicubic downsampling.

B. Overview

The proposed network fBSVSR(·) aims to recover a clean
and sharp HR mid-frame I SR

t given 2N +1 consecutive blurry
LR frames I = {I LR

t+n}
N
n=−N . That is,

I SR
t = fBSVSR(I). (2)

As shown in Fig. 1, we set N = 2 for a brief illustra-
tion. First, we perform blur estimation to generate blur-aware
feature F s

t through Nk , NFFT, and Ns . Second, the blurry LR
frames will be progressively compensated to sharp mid-feature
F s

t by multiscale DConv NMSD and multiscale DA NDA in a
coarse-to-fine manner. Third, F s

t is transformed into F̄ t to
guide the sharp mid-feature adaptive to a desired domain for
reconstruction. Denote the output of nth transformation N T

n
as Hn .

Finally, we set a 3 × 3 convolution and a pixel-shuffle layer
to restore the super-resolved mid-frame from Hn .

In the following subsections, we will introduce the imple-
mentation details of our BSVSR.
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Fig. 1. Overview of our BSVSR, which takes 2N + 1 = 5 consecutive blurry low-resolution frames as input and predicts the sharp HR mid-frame I SR
t .

Fig. 2. Flowchart of (a) optimization of blur kernel estimation network, (b) MSD convolution alignment [28] used for coarse compensation, (c) nth blur-aware
transformation network, which receives blur-aware feature F s

t and the result of previous transformation Hn−1 and outputs Hn , and (d) DA used for fine
compensation.

C. Blur Estimation

We follow the blur estimation process in [68], as it
offers decent performance with a lightweight design. First,
we employ kernel estimation network Nk to predict the explict
blur kernel Bt from I LR

t

Bt = Nk
(

I LR
t

)
. (3)

As shown in Fig. 2(a), the estimated blur kernel is used to
generate I cycle

t . Nk is trained to optimalize the L1 difference
between I cycle

t and I LR
t . After training of Nk , a fast Fourier

transformation strategy NFFT is adopted to explore the latent

sharp mid-frame I sharp
t

I sharp
t = NFFT

(
I LR
t , Bt

)
. (4)

Through a sharp feature extraction network Ns , we obtain a
blur-aware mid-feature F s

t that contains blur information

F s
t = Ns

(
I sharp
t

)
. (5)

Note that blur estimation is not the major focus of our paper,
and we pay more attention on accurate compensation for blurry
LR frames. More details about Nk , NFFT, and Ns can be found
at [68].
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Fig. 3. Illustration of the proposed progressive temporal compensation strategy, which used MSD compensation and DA fusion to explore more clean and
sharp cues in a coarse-to-fine manner. The color of the sampling points represents the attention weights used for aggregation. By assigning higher attention
weights to clean and sharp points, we can encourage the representation of vital sharpness and eliminate blurry pixels.

D. Coarse-to-Fine Progressive Compensation

Previous blind VSR methods use optical flow warping to
align adjacent frames to mid-frame for compensation, which
tends to introduce inaccurate motions in severely blurred LR
satellite frames. To mitigate the misalignment and extract
sharp information, we proposed a progressive compensation
strategy that aggregates LR features in a coarse-to-fine manner.
As shown in Fig. 3, it consists of two stages, termed MSD
convolution compensation and DA compensation. Before per-
forming compensation, 2N + 1 consecutive frames I will be
extracted to LR features {FLR

t+n}
N
n=−N .

1) MSD Convolution Compensation: The MSD compen-
sation layer employs MSD convolution to align consecutive
frames in three slid windows Wi (i = t − 1, t, t + 1), where
Wi = {FLR

i−1, FLR
i , FLR

i+1} contains three consecutive frames.
For simplicity, we use i = t as an example to explain how
to compensate FLR

t with FLR
t−1. The key to DConv is learning

additional offsets for sampling points. As shown in Fig. 2(b),
the adopted MSD could generate precise offset by exploring
multiscale features in satellite videos. The offset is generated
by

2t−1 = MSRB
(
Conv

[
FLR

t , FLR
t−1

])
= {1pk}

K
k=1 (6)

where MSRB is multiscale residual block, [·] is feature
concatenation, and K means the sampling numbers. Here,
K = 9 represents nine sampling points in a 3 × 3 convolution
grid.

For a position p0 in FLR
t−1, the location of nine sam-

pling points is (p0 + pk), where pk ∈ {(−1,−1), . . . ,

(0, 0), . . . , (1, 1)}. With the addition offset 1pk , the
deformable sampling location can be written as (p0 + pk +

1pk). Denote the weight of the kth sampling point as ωk ,
and the value of compensated pixel at position p0 can be
formulated by

Fa
t−1(p0) =

K∑
k=1

ωk · FLR
t−1(p0 + pk + 1pk). (7)

Similarly, we could obtain the compensated feature Fa
t and

Fa
t+1. The coarse compensated feature F̃ t is fused by a 3 ×

3 convolution

F̃ t = Conv
([

Fa
t−1, Fa

t , Fa
t+1

])
. (8)

By setting i = t − 1 and i = t + 1, we could get coarse
compensated features F̃ t−1 and F̃ t+1 from windows Wt−1 and
Wt+1, respectively.

2) DA Compensation: The DA compensation layer implic-
itly models the pixelwise blur level to explore more sharp and
clean cues for the final mid-feature.

As shown in Fig. 2(d), NDA receives F̃ t−1, F̃ t , F̃ t+1, and
optical flows Ot as input and produces F̄ t , where Ot =

(flowt→t−1, flowt→t+1) contains two optical maps from frame
I LR
t to its neighboring frames I LR

t−1 and I LR
t+1. Here, we adopt

PWC-Net [69] to predict the optical flows, as it offers decent
performance. Notably, different from previous works that rely
on optical flows for compensation [67], [68], Ot is mainly
used to generate the base offsets to stabilize the optimization
of DA.

Step 1: We concatenated the coarse features to generate a
tensor with the shape of T × H × W × C , where H , W ,
and C denote the height, width, and channel number of frame
features, and T = 3 means the feature numbers. After a
convolution layer, the tensor will be unfolded to a flattened
feature E f

∈ RT H WC

E f
= ReShape

(
Conv

([
F̃ t−1, F̃ t , F̃ t+1

]))
. (9)

Step 2: Before fusing coarse compensated features, they are
back warped by optical flows

Fw
k = Warp

(
F̃ k, flowi→k

)
, k = i − 1, i + 1. (10)

Then, we concatenated the warped features and passed them
to a convolution layer to generate a tensor of shape T × H ×

W × C . On the one hand, it will be reshaped to an attention
map A f

∈ RH W×M×T ×K . In this manner, the sharpness of
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TABLE I
PROPERTIES OF FIVE VIDEO SATELLITES INVOLVED IN THIS ARTICLE, INCLUDING JILIN-1, URTHECAST, CARBONITE-2, SKYSAT-1, AND ZHUHAI-1

pixels could be measured by the attention maps

A f
= ReShape

(
Conv

([
Fw

i−1,Fw
i+1

]))
(11)

where M is the heads of multihead self-attention and K =

9 represents the number of sampling points. On the other hand,
we add it with the optical flows to provide the base offset of
sampling points 1P f

∈ RH W×M×T ×K×2

1P f
= ReShape

(
Conv

([
Fw

i−1,Fw
i+1,

])
+Oi

)
. (12)

Step 3. The flatten feature E f , base offsets of sampling
points 1P f , and attention maps A f are sent into DA function
D to generate the compensated flatten feature of shape C ×

H × W . Finally, we reshape it and pass it to a convolution
layer

F̄ t = Conv
(
ReShape

(
D

(
E f , A f , 1P f ))). (13)

Note that the DA function also introduces a multiscale
design to generate multilevel offsets, which quite fits the char-
acteristic of remote sensing imagery with multiscale objects.
For more details of the DA function, please refer to [27].

E. Blur-Aware Transformation

To adapt the sharp mid-feature into a suitable domain
for restoration, we need to make the features aware of blur
information by effective transformation.

As shown in Fig. 2(c), the transformation happens in two
branches, i.e., PST and channel transformation. Take the nth
transformation network N T

n as an example. The output of N T
n

is determined by

Hn = N T
n

(
F s

t ,Hn−1
)

(14)

where Hn is the summation of the outputs derived from spatial
and channel transformation branches, respectively. We denote
the outputs as FST

t and FCT
t . Hn−1 is the output of N T

n−1.
In the following, we will describe how to obtain the spatial
and channel-transformed features.

PST: This branch aims to find a robust spatial activation
to modulate the features for better blur awareness. First,

we gained the transformed feature L1 at the first level by
concatenating and fusing N T

n−1 and F s
t

L1 = Conv
([
Hn−1,F s

t

])
. (15)

Through two bilinear downsampling layers, the pyramid fea-
tures L2 at the second level and L3 at the third level can be
obtained. Such pyramid design helps to preserve the multiscale
information in satellite imagery [70], thereby leading to accu-
rate spatial activation. The spatial activation can be formulated
by

atts = UP(UP(σ (L3) ⊙ L3) + L2). (16)

With the help of this spatial activation, we could perform
blur transformation in the spatial dimension, which means the
spatial transformed feature can be obtained by

FST
t = atts ⊙ L1 + L1. (17)

1) Channel Transformation: We exploit the widely used
sequence-and-excitation network (SENet) [71] as the channel
transformation algorithm, given its efficient calculation and
decent performance. The channelwise modulation weight attc
is generated by the following:

attc = σ
(
Squeeze

(
F s

t

))
(18)

where squeeze operation Squeeze(·) includes an average pool-
ing layer, a convolution layer with ReLU activation for feature
compression, and another convolution for feature expanding.
Here, σ is sigmoid function for activation. Finally, the channel
transformed feature FCT

t can be determined by

FCT
t = attc ⊙ F s

t (19)

where ⊙ represents the channelwise multiplication.

F. Feature Extraction and Reconstruction

1) Feature Extraction: The proposed BSVSR uses five
residual blocks to extract 2N + 1 blurry LR features
{FLR

t+n ∈ RH WC
}

N
n=−N , where C is set to 128 in our final model.

Each residual block consists of “Conv + ReLU + Conv” and
is equipped with a global shortcut.
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2) Reconstruction: We set a 3 × 3 convolution Conv(·)

and pixel-shuffle layer PS(·) [72] to restore the super-resolved
mid-frame, which means

I SR
t = PS(Conv(Hn)) +

(
I LR
t

)
↑s (20)

where (·)↑s denotes the bilinear upsampling with a scale factor
of s.

IV. EXPERIMENT AND DISCUSSION

A. Satellite Video Data Source

To evaluate the performance of our BSVSR against state-of-
the-art approaches, we conduct comprehensive experiments on
five mainstream video satellites, including Jilin-1, Carbonite-2,
UrtheCast, SkySat-1, and Zhuhai-1. The training set is cropped
from Jilin-1 satellite videos, where the spatial resolution of the
ground-truth video is 640 × 640. Based on (1), we degraded
the HR videos to generate low-resolution counterparts to estab-
lish the HR and low-resolution training pairs. Following our
previous works [28], [64], we ultimately obtained 189 video
clips for model training. As for model testing, we randomly
cropped six scenes from Jilin-1 that are nonoverlapping with
the training set. In addition, all the video clips of Carbonite-
2, UrtheCast, SkySat-1, and Zhuhai-1 are used for further
testing. The number of test video clips is 10, 14, 6, and 3.
In the end, we had 39 videos from five video satellites for
comprehensive model evaluation. A detailed summary of these
five satellite videos can be found in Table I. Our dataset is
publicly available at https://github.com/XY-boy.

B. Implementation Details

We set s = 4 to focus on ×4 blind SR for satellite
video. As shown in Fig. 1, our network receives 2N + 1 =

5 consecutive frames as input, and the residual blocks extract
homogeneous features with C = 128 channels. For profound
blur-aware transformation, we stack n = 20 transformation
module N T

n , which strikes a balance between model size and
performance. Consistent with previous blind VSR settings,
we adopt isotropic Gaussian blur kernel of size 13 × 13 to
degrade the ground-truth videos, as isotropic Gaussian blur
kernel is highly consistent with the blur distribution in satellite
videos [26]. The standard deviation of Gaussian blur kernel is
set to σ ∼ [0.4, 2].

During modeling training, we first sample 32 blurry LR
video patches with a size of 64 × 64 in each mini-batch
to train Nk by optimizing Lkernel with a learning rate of
1 × 10−4. Subsequently, we train the entire model using the
overall loss L = Lkernel + LSR, where LSR is the pixelwise
difference LSR = ∥I GT

t − It
SR

∥1 between restored mid-frame
I SR
t and ground truth I GT

t , and Lkernel is shown in Fig. 2(a).
The learning rate is initialized to 1 × 10−4 and halved
for every 25 epochs, and finally, our BSVSR model will
reach convergence after 50 epochs. Date augmentation [74] is
performed by random flipping and 90 ◦C rotation. We use the
Adam optimizer for model optimization, and all experiments
are conducted on a single NVIDIA RTX 3090 GPU with
24-GB memory under the PyTorch framework.

C. Comparison With State of the Arts

In this section, we comprehensively evaluate the effective-
ness of our proposed BSVSR on synthetic and real-world satel-
lite videos and compare it with state-of-the-art approaches.
Both quantitative and qualitative results are presented and
analyzed in detail.

1) Selected Methods and Metrics: The comparative
approaches can be categorized into four types:

1) nonblind SISR model, as SwinIR [33];
2) blind SISR methods, including IKC [47], AdaTar-

get [49], and DASR [48];
3) nonblind VSR networks, such as DUF-52L [38],

EDVR-L [40], BasicVSR [73], MSDTGP [28], and
MANA [42];

4) blind VSR approach DBVSR [68].
In particular, for blind SISR, IKC estimates the explicit

blur kernels and transforms the blur information with affine
transformation, termed SFT layer. Now, the SFT layer is
prevailing in blind SISR models; DASR predicts the degrada-
tion representation without kernel correction, which is more
efficient than IKC. Besides, a DAConv is proposed in DASR
for effective blur transformation; AdaTarget is an implicit blur
transformation model, which does not require blur estimation.
Therefore, we include these representative blind SISR meth-
ods for comparison. For nonblind VSR, DUF-52L implicitly
realizes temporal compensation using 3-D dynamic filters;
EDVR-L and MSDTGP employ DConv to explore temporal
priors. Notably, MSDTGP is specialized for satellite videos;
BasicVSR is a bidirectional propagation approach that pro-
vides leading performance with optical flow compensation;
MANA relies on nonlocal attention for compensation. Hence,
these methods provide comprehensive coverage of mainstream
temporal compensation strategies. As for blind VSR, few
studies are available for comparison. DBVSR combines optical
flow warping and SFT layer to achieve blind VSR, which
produces promising results against nonblind models.

Three metrics are involved in the quantitative evaluation.
In experiments on simulated data, the classical image quality
indicator peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) are used to measure the
fidelity between restored results and ground truth. In real-
world experiments, the reference-free metric natural image
quality evaluator (NIQE) [75] is adopted. NIQE compares the
restored image with a default model computed from images of
natural scenes. Note that a lower NIQE value indicates better
quality of human perception.

2) Quantitative Comparison: Ascribing to the vital imple-
mentation of pixelwise blur-level measurement, our BSVSR
is more flexible and allows accurate temporal compensation
in blurry LR satellite videos. As reported in Tables II–IV,
BSVSR achieves the best average performances on all test
sets and is well generalized in various blur kernels with kernel
width σ = 1.2, 1.6, and 2.0.

For instance, when σ = 2.0 on Jilin-1 test set in Table II,
our BSVSR gains a PSNR improvement of 4.21 and 2.28 dB
compared with the best nonblind models SwinIR and EDVR-
L, respectively. This illustrates that the classical SR approach
is not capable of handling blind degradation processes, such
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TABLE II
QUANTITATIVE RESULTS ON THE JILIN-1 TEST SET. HERE, WE EVALUATE THE COMPARATIVE METHODS UNDER VARIOUS BLUR KERNEL

WIDTHS (σ = 1.2, 1.6, AND2.0). THE BEST PSNR/SSIM PERFORMANCES ARE HIGHLIGHTED IN BOLD RED COLOR,
AND THE SECOND-BEST RESULTS ARE MARKED IN BLUE COLOR

as unknown blurs and downsampling. Compared with the
best blind SISR method DASR, we can lead it by a large
margin of 1.31 dB, indicating that accurate temporal com-
pensation is crucial for BSVSR, as it provides cleaner and
sharper temporal cues to make the highly ill-posed problem
well posed. Although BSVSR shares the same blur estima-
tion network with DBVSR, we can surpass it by 0.86 dB,
which demonstrates that temporal compensation also plays
an important role in blind VSR. As mentioned before, most
blind SR methods focus on blur estimation and overlook the
critical aspect: temporal compensation. Under the same blur
estimation procedure, the proposed progressive compensation
strategy can extract more vital sharpness than the optical flow
used in DBVSR, thus eliminating the interference of blurry
pixels for better restoration.

Furthermore, as listed in Tables III and IV, we found that
the blind SISR methods without temporal compensation can
outperform the blind VSR approaches, such as IKC can ahead

DBVSR 0.34 dB in UrtheCast when σ = 1.2. On the one
hand, this illustrates that temporal compensation in severely
blurred and downsampled videos remains a challenging task,
because instead of exploring more complementary, inaccurate
temporal compensation may introduce interference that is
harmful to restoration. On the other hand, we can alleviate
this misalignment by performing pixelwise blur-level modeling
with DA.

3) Qualitative Comparison: The visual comparison results
are shown in Figs. 4–6, and the proposed method is capable
of recovering more sharp and reliable details in various blurs
and scenes.

For example, as shown in Fig. 4, we observed that IKC and
DBVSR restore apparent artifacts in Scene-2 of Jilin-1. This
could be attributed to the mismatch between the estimated
blur kernel or undesirable feature adaptation. Notably, the
proposed BSVSR shares the same blur estimation component
with DBVSR. However, it achieves favorable visual results,
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Fig. 4. Qualitative results on Scene-1, Scene-2, and Scene-4 from Jilin-1 test set with various blur kernels. The size of the region of interest (ROI) is 70×70.
Our method recovers more sharp and clean details than state-of-the-art nonblind and blind SR methods.

suggesting that the issue may not lie in the blur estimation
but in the inaccurate blur transformation involved in DBVSR.
Therefore, we can conclude that our PST can better calibrate
the mid-feature to the correct solution space compared with
SFT.

In Fig. 5, AdaTarget, IKC, BasicVSR, and MANA generate
severe line distortion and blending, which completely deviate
from the ground truth. Our BSVSR reconstructs the spatial
details and structures better than DBVSR, which illustrates
DA success in exploring more sharp details from blurred
LR frames than inaccurate optical flow warping. Similarly,
as shown in Fig. 6, all of the comparative methods tend to
recover more bent shapes and fuzzy edges of the buildings on
the ground. Our BSVSR produces higher fidelity with reliable
and sharp distributions against other nonblind and blind SR
approaches.

4) Real-World Comparison: Apart from the experiments
on simulated degradation, we further evaluate our method
against state-of-the-art models on real-world satellite videos.
The visual comparisons and corresponding NIQE metrics are
shown in Fig. 7. Apparently, our method achieves the best
NIQE, indicating the best human perception. Visually, IKC
restores blur and noise on the edge of the plane, MANA creates
unpleasing distortion in the tail, and our results are more clean
and sharp in the high-frequency details.

D. Ablation Studies
In this section, we investigate the effectiveness of the key

components of our BSVSR. Also, hyperparameter setting and
model efficiency are carefully discussed.

1) Effectiveness of Blur Kernel Estimation: To examine the
effects of blur kernel estimation, we build three models for
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Fig. 5. Qualitative results on UrtheCast test set with blur kernel width σ = 1.6. The size of the ROI is 90 × 90. Our method has fewer distortions and
restores more textures than other state-of-the-art nonblind and blind SR methods.

TABLE III
QUANTITATIVE RESULTS ON THE CARBONITE-2 AND URTHECAST TEST SETS. HERE, THE PSNR/SSIM IS THE AVERAGE RESULT OF ALL SCENES

ON EACH TEST SET. THE BEST PSNR/SSIM PERFORMANCES ARE HIGHLIGHTED IN BOLD RED COLOR, AND THE SECOND-BEST RESULTS
ARE MARKED IN BLUE COLOR. NOTE THAT BASICVSR IS A RECURRENT METHOD, AND WE FOLLOWED THE OFFICIAL SETTINGS,

USING 15 CONSECUTIVE FRAMES FOR PROPAGATION

TABLE IV
QUANTITATIVE RESULTS ON THE SKYSAT-1 AND ZHUHAI-1 TEST SETS. THE BEST PSNR/SSIM PERFORMANCES ARE HIGHLIGHTED IN BOLD RED

COLOR, AND THE SECOND-BEST RESULTS ARE MARKED IN BLUE COLOR

comparison: 1) Model-1: we remove the network Nk , NFFT,
and Ns ; in this case, we pass I LR

t to five 3 × 3 convolution
layers to generate F s

t for transformation; 2) Model-2: we
delete Nk and do not estimate blur kernel Bt; here, we use
bilinear upsampling to generate the latent sharp frame I sharp;
and 3) Model-3: we retain Nk but do not optimize it with
Lkernel. As reported in Table V, Model-1 gets the worse

performance, as bilinear upsampling could not incorporate
the blur information for blur-aware transformation. Model-2
could find some sharp cues with the help of sharp features
extraction network. However, without the guidance of Bt,
it is hard to adjust the solution space to an accurate domain.
Although Model-3 performs blur kernel estimation, it can
not find the accurate blur distribution without the Lkernel.
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Fig. 6. Qualitative results on SkySat-1 (top) and Zhuhai-1 (bottom) test sets with blur kernel width σ = 2.0. The size of the ROI is 70 × 70. Our method
produces more realistic and sharp details than state-of-the-art nonblind and blind SR methods.

TABLE V
ABLATION STUDIES OF BLUR KERNEL ESTIMATION. THE PSNR (DB) IS

CALCULATED IN SCENE-2 OF JILIN-1 WITH σ = 1.6

By applying the entire blur estimation process, our method
gains substantial improvements for blind VSR tasks, such as
leading Model-2 and Model-3 by 0.28 and 3.8 dB in terms of
PSNR, respectively.

Furthermore, as illustrated in Fig. 8, we visualize the
estimated blur kernel Bt and compare it with another state-
of-the-art blur kernel estimation approach KernelGAN [76].
Our estimated blur kernel is consistent with the ground-truth
kernel, which illustrates that our model predicts the precise

TABLE VI
QUANTITATIVE DISCUSSION OF THE PROGRESSIVE TEMPORAL

COMPENSATION. ONE-STAGE MEANS WE DIRECTLY ALIGN AND
FUSE THE 2N ADJACENT FRAMES TO THE MID-FRAME FOR

TEMPORAL COMPENSATION. THE PSNR (DB) IS
CALCULATED IN SCENE-2 OF JILIN-1 WITH σ = 1.6

blur information from satellite videos to make the network
better aware of the degradation process.

2) Effectiveness of Progressive Temporal Compensation:
As mentioned before, since the optical flow estimation is
laborious and inaccurate to describe the motion relationship in
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Fig. 7. Real-world comparisons on Scene-1 and Scene-2 from Carbonite-2.
Our method gains less blur on the boundary of the plane and building. A low
NIQE represents a higher perceptual quality.

Fig. 8. Visualization of estimated blur kernels. (a) Blurry low-resolution
frame. (b) Estimated blur kernel of KernelGAN [76]. (c) Estimated blur kernel
of our BSVSR. (d) Ground-truth blur kernel.

severely blurry and low-resolution satellite videos, we intro-
duce the MSD convolution and DA to progressively aggregate
more clean and sharp cues in a coarse-to-fine manner.

To begin with, we set up three baselines that directly
align and fuse the blurry LR frames to generate the sharp
mid-feature F̃ t in a one-stage manner. Specifically, Model-
4 employs PWC-Net to estimate the optical flow maps from
mid-frame I LR

t to adjacent frames. Then, the warped adjacent
features are concatenated and fused to F̃ t . Model-5 adopts
MSD to align adjacent feature to mid-feature, and the aligned
features are concatenated and fused. Model-6 exploits DA
to aggregate the frames. As listed in Table VI, we find
that progressive compensation shows more promising perfor-
mance than one-stage compensation. As examined in previous
works [28], [77], dividing the entire frame sequences into sub-
sequence helps to alleviate the alignment difficulties caused by
large displacement. Our method uses a slid-window strategy to
progressively merge the temporal information in each window,
relieving the pressure of MSD alignment. Besides, the optical-
flow-based compensation model produces the worse results
in one-stage compensation models. Therefore, we argue that

Fig. 9. Training process of different transformation modules. Our PST
provides a more robust and effective blur transformation performance.

TABLE VII
QUANTITATIVE DISCUSSION OF THE COARSE-TO-FINE TEMPORAL
COMPENSATION. MODEL-7 TO MODEL-11 ADOPT A DIFFERENT

COMBINATION OF FUSION MODULES. THE PSNR (DB) IS
CALCULATED IN SCENE-2 OF JILIN-1 WITH σ = 1.6

TABLE VIII
ABLATION ANALYSIS ON THE EFFECTIVENESS OF PST. BASELINE MEANS

WE REPLACE PST WITH THREE CONVOLUTION LAYERS. SFT AND
DA CONV ARE TWO WIDELY USED BLUR TRANSFORMATION

APPROACHES. THE PSNR (DB) IS CALCULATED IN
SCENE-2 OF JILIN-1 WITH σ = 1.6

optical flows are not robust and accurate in blurry LR satellite
videos.

In addition, we set different combinations in the coarse-
to-fine compensation process. The results are reported in
Table VII, which indicates that MSD is more practical to
explore coarse sharpness and DA can aggregate the final sharp
mid-features by considering the blur level of pixels.

3) Effectiveness of PST: With the awareness of blur infor-
mation, we perform flexible transform to adjust the mid-feature
in the spatial and channel dimension to make it adaptive to
various degradations. To evaluate the proposed PST, we set a
baseline model by replacing PST with three convolution layers.
In addition, two widely used blur transformation modules, SFT
layer and DAConv, are introduced as alternative transformation
networks for comparison. The training process is displayed in
Fig. 9, and the quantitative results can be found in Table VIII.
We observe that the SFT layer suffers instability in the training
process. Benefiting from the well-defined spatial and channel
activation, our method reflects robust blur transformation.
Moreover, our PST ahead SFT layer and DA Conv of PNSR
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Fig. 10. Impact of different hyperparameters on the performance of our
BSVSR. (a) Number of blur transformation networks. (b) Number of channels.

TABLE IX
QUANTITATIVE COMPARISONS OF OUR METHOD AND SOTAS IN TERMS

OF PARAMETERS, FLOPS, AND RUNNING TIMES. THE FLOPS ARE
CALCULATED ON FIVE LR INPUT FRAMES WITH THE SIZE OF

150 × 150. THE RUNNING TIME (FRAMES/S) IS THE
AVERAGE INFERENCE CONSUMPTION PER FRAME.
NOTE THAT 1M = 106 AND 1G = 109 . HERE, THE

PSNR (DB) IS THE AVERAGE TEST RESULT
ON FIVE SATELLITE VIDEOS

by 0.42 and 0.06 dB, respectively. As mentioned before,
the pyramid structure is beneficial to preserve the multiscale
information in satellite videos. Therefore, we could conduct
multilevel transformation to ensure more precise feature adap-
tation.

4) Model Efficiency: Here, we first discuss the relationship
between model size and performance of BSVSR by stacking
different numbers n of transformation network N T

n . The quan-
titative of PSNR is provided in Fig. 10(a). With the growing
number of n, the communication between blur information
and mid-feature deepens, leading to better feature adaptation.
However, such improvement reaches a plateau when n = 15.
In addition, we investigate the impact of channel number C .
As shown in Fig. 10(b), despite increasing performance as C
grows, the huge parameters of our model become an urgent
issue when C is larger than 64. To achieve a favorable trade-off
between model efficiency and performance, we adopt n =

20 and C = 128 in our final model.
Furthermore, we evaluate the model efficiency of compar-

ative state-of-the-art methods in terms of parameters, floating
point operations (FLOPs), and running times. As reported in
Table IX, BSVSR gains the best performance with an accept-
able model size. Note that SISR methods naturally have fewer
parameters and FLOPs than the VSR approach, as they do not
include extra components for temporal compensation. Com-
pared with the best nonblind VSR model EDVR-L, BSVSR is

Fig. 11. Relationship between FLOPs (G) and PSNR (dB) performance. Our
BSVSR achieves a favorable trade-off between computational complexity and
performance.

27% less in parameters (15.2M versus 20.7M) and 208.9 less
in FLOPs. Regarding the blind VSR approach DBVSR, our
BSVSR has significantly lower complexities (688.9G versus
1792.3G) and faster inference speed (0.077 versus 0.154 s).
This is because the optical flow estimation used in DBVSR
is time-consuming, whereas our progressive compensation
strategy is more computationally efficient and effective in
temporal compensation. Fig. 11 gives a visual relationship
between model performance and FLOPs. It is evident that our
method achieved favorable performance compared with other
methods while maintaining affordable complexity.

V. CONCLUSION

In this article, we proposed a blind SR network for satellite
videos (BSVSR). Our key motivation is that not all the pixels
can provide clean and sharp cues for blind VSR. Therefore, our
BSVSR mainly aims at compensating for blurry and smooth
pixels from severely degraded satellite videos by considering
the blur level of pixels. Unlike prior BSVSR methods that
employ optical flow warping or patchwise similarity to align
frames, we progressively explore temporal redundancy using
MSD convolution and further aggregate them into a sharp
mid-feature with multiscale DA in a coarse-to-fine manner.
In addition, we devise a robust PST module, which recalibrates
the sharp mid-feature in the multilevel domain to modulate the
mid-feature into a suitable solution space. Extensive experi-
ments on five video satellites demonstrate that our BSVSR
gains favorable performance against state-of-the-art nonblind
and blind SR approaches.

Although the proposed BSVSR could explore vital sharp-
ness from blurry LR satellite videos, it still remains a
challenging task to grasp beneficial information in compressed
satellite imagery. Besides, missing a real-world satellite video
dataset poses a domain gap between simulation and reality.
In our future work, we plan to take the noise term into
consideration and build a large-scale dataset with real-world
degradations.
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