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Remote sensing image super-resolution via cross-scale hierarchical 
transformer
Yi Xiao a, Qiangqiang Yuan a, Jiang He a and Liangpei Zhang b

aSchool of Geodesy and Geomatics, Wuhan University, Wuhan, China; bState Key Laboratory of Information Engineering in Surveying, 
Mapping and Remote Sensing, Wuhan University, Wuhan, China

ABSTRACT
Global and local modeling is essential for image super-resolution tasks. However, current 
efforts often lack explicit consideration of the cross-scale knowledge in large-scale earth 
observation scenarios, resulting in suboptimal single-scale representations in global and 
local modeling. The key motivation of this work is inspired by two observations: 1) There exists 
hierarchical features at the local and global regions in remote sensing images, and 2) they 
exhibit scale variation of similar ground objects (e.g. cross-scale similarity). In light of these, this 
paper presents an effective method to grasp the global and local image hierarchies by system-
atically exploring the cross-scale correlation. Specifically, we developed a Cross-scale Self- 
Attention (CSA) to model the global features, which introduces an auxiliary token space to 
calculate cross-scale self-attention matrices, thus exploring global dependency from diverse 
token scales. To extract the cross-scale localities, a Cross-scale Channel Attention (CCA) is 
devised, where multi-scale features are explored and progressively incorporated into an 
enriched feature. Moreover, by hierarchically deploying CSA and CCA into transformer groups, 
the proposed Cross-scale Hierarchical Transformer (CHT) can effectively explore cross-scale 
representations in remote sensing images, leading to a favorable reconstruction performance. 
Comprehensive experiments and analysis on four remote sensing datasets have demonstrated 
the superiority of CHT in both simulated and real-world remote sensing scenes. In particular, 
our CHT outperforms the state-of-the-art approach (TransENet) in terms of PSNR by 0.11 dB on 
average, but only accounts for 54.8% of its parameters.
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1. Introduction

High spatial resolution remote sensing imagery plays 
an indispensable role in various earth observation 
tasks (Deren et al. 2023; Wang et al. 2022b), such as 
land-cover classification (Li et al. 2023; Xu et al. 2022), 
object detection (Yu et al. 2021) and change detection 
(Bai et al. 2022; Chen, Yokoya, and Chini 2023; Chen 
et al. 2022, 2023a; Han et al. 2023). Recent advance-
ments in aerospace sensors have brought impressive 
capability in acquiring high-resolution imagery, pro-
viding massive high-quality data for the research com-
munity and significantly advancing downstream 
applications. However, limited by the intrinsic resolu-
tion and complex imaging environment, remote sen-
sing images captured from the aerial platforms can 
merely reflect partial spatial details, resulting in 
a suboptimal scene representation.

A straightforward solution to alleviate this issue is 
improving the imaging resolution of satellite sensors. 
Nevertheless, it is obviously time-consuming and une-
conomic. Fortunately, Super-Resolution (SR) techni-
ques (He et al. 2023a, 2023b; Liu et al. 2023; Ma et al.  
2023; Xiao et al. 2023), which algorithmically recover 

High-Resolution (HR) images from Low-Resolution 
(LR) observations, provide a practical alternative. 
Given an LR observation, SR aims to restore the latent 
HR counterpart. As the HR solution space is infinite, 
SR is inherently an ill-posed issue (Zhang et al. 2022b). 
Broadly, SR can be categorized into two types: tradi-
tional and deep-learning-based approaches. 
Traditional methods often employ interpolation 
(Freeman, Jones, and Pasztor 2002; Zhou, Yang, and 
Liao 2012) interpolation or rely on hand-crafted prior 
knowledge (Timofte, De Smet, and Van Gool 2013; 
Zhang et al. 2023) to compact the solution space. 
However, these methods have limited universality 
and suffer from high computational complexity. 
Subsequently, owing to the non-linear representation 
capability of Convolutional Neural Networks (CNNs) 
(Fernandez-Beltran, Latorre-Carmona, and Pla 2017; 
Xiao et al. 2022; Miao et al. 2022a, 2023; Jiang et al.  
2021; He et al. 2021; Yu et al. 2023; Zhou, Li, et al.  
2023a; Zhou, Liu, et al. 2023b), more latent priors can 
be explored by CNNs to tame the ill-posedness. 
Notable efforts include deep (Kim, Kwon Lee, and 
Mu Lee 2016) and wide (Lim et al. 2017) architectures, 
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dense models (Jiang et al. 2020; Zhang et al. 2018b) 
and attention-based approaches (Mei, Fan, and Zhou  
2021; Niu et al. 2020). However, few efforts have been 
made to enhance the representation of cross-scale 
correlations in remote sensing scenes, as they are 
mainly developed for natural images.

Recently, a cross-scale exploration network (Lei 
and Shi 2022) was proposed to grasp the cross-scale 
similarity in remote sensing imagery. Despite achiev-
ing favorable performance, the CNN-based 
approaches are still less capable of modeling the long- 
range properties, thus reaching a plateau of perfor-
mance. Drawing upon the success of Transformer (Ma 
et al. 2022), the transformer-based SR methods (Chen 
et al. 2023b; Lei and Shi 2022; Xiao et al. 2022b) have 
demonstrated comparable, and even superior perfor-
mance against CNN-based models. Owing to the glo-
bal modeling strength of self-attention (Pei et al. 2023; 
Peng et al. 2023; Xiao et al. 2023c), the transformer 
naturally excels in exploring global dependencies, 
which is beneficial for SR tasks. More recently, 
a multi-stage transformer-enhanced network (Lei, 
Shi, and Wenjing 2022) was developed for remote 
sensing image SR. Nevertheless, these methods have 
overlooked the cross-scale characteristics present in 
remote sensing images, failing to adequately consider 
these valuable priors.

More precisely, compared to natural images, 
remote sensing images have some unique properties. 
Firstly, in large-scale observation scenes, hierarchical 
cross-scale priors exist at both local and global ranges. 
This can be intuitively illustrated in Figure 1. To 
capture local features such as edges and colors, con-
volution layers with single-scale (e.g., 3� 3) designs 

are commonly employed. However, this single-scale 
approach only captures partial representations, lead-
ing to suboptimal exploration of cross-scale localities 
(green boxes in Figure 1). On the other hand, although 
transformers could extract global dependency with 
self-attention, they fail to consider the cross-scale glo-
bal similarity (red boxes in Figure 1). This limitation 
arises because the scale of the feature space used for 
self-attention calculations is often fixed. For instance, 
the self-attention matrix is typically computed by mea-
suring the similarity between query-key pairs at the 
same scale, lacking flexibility in estimating cross-scale 
self-attention.

To mitigate the aforementioned challenges, this 
paper proposes an effective Cross-scale Hierarchical 
Transformer (CHT) to systematically model the 
local and global cross-scale features in remote sen-
sing images. Specifically, instead of directly comput-
ing the self-attention matrix from query-key pairs, 
we proposed a Cross-scale Self-Attention (CSA) 
module to implicitly model the cross-scale global 
representations in two subspaces. The CSA module 
incorporates an auxiliary token (denoted as S) with 
diverse feature scales compared to the query (Q) and 
key (K), allowing for intermediate self-attention 
computation between Q � S and K � S. This 
approach enables CHT to measure the cross-scale 
relevance in different feature spaces with varying 
scales. Essentially, the auxiliary token decomposes 
the attention calculation between query-key pairs 
into two subspaces, making the scale of self- 
attention more flexible. Furthermore, to better 
explore cross-scale features at the local range, 
a Cross-scale Channel Attention (CCA) mechanism 
is developed to generate a series of multi-scale local 
features and progressively refine them in a coarse-to 
-fine manner. By jointly incorporating the strengths 
of CSA and CCA within transformer groups, our 
CHT leverages image hierarchies and achieves nota-
ble performance improvements for remote sensing 
image super-resolution tasks.

In short, the main contribution of this paper is 
listed as follows:

(1) The proposed CHT hierarchically models both 
global and local cross-scale representations, 
enabling a comprehensive understanding of 
the valuable cross-scale knowledge in remote 
sensing images.

(2) To explore the cross-scale global features, 
a cross-scale self-attention module is proposed, 
which could implicitly compute cross-scale 
self-attentions within feature spaces at different 
scales.

(3) To model the cross-scale local representations, 
we devise a cross-scale channel attention 
model, where cross-scale features are explored 

Figure 1. Remote sensing images present a hierarchy of fea-
tures in local and global ranges. The cross-scale local (green 
boxes), e.g., edges and colors, and global (red boxes) features, 
e.g., cross-scale self-similarity, cannot be fully explored by 
single-scale CNNs and transformer.
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and mutually enriched with each other in 
a coarse-to-fine manner.

This paper is organized as follows. Section 2 reviews 
remote sensing imagery super-resolution. In Section 3, 
we describe the details of our CHT. Section 4 reports 
extensive experiments and ablation analysis. Section 5 
is the conclusion.

2. Related work

2.1. Natural image super-resolution

2.1.1. CNN-based methods
CNN-based SR methods have achieved remarkable 
success in natural images. Inspired by the Super- 
Resolution Convolution Neural Network (SRCNN) 
(Dong et al. 2015), the CNN-based SR methods are 
booming. Kim et al. (2016) promoted the performance 
of SRCNN by increasing the depth of the network. Lim 
et al. (2017) choose to expand the width of CNN and 
achieve favorable performance. However, early meth-
ods often employ interpolation to enlarge the spatial 
size of LR input, which may introduce interference in 
the pre-processing operation. To this end, Shi et al. 
(2016) devise an efficient sub-pixel convolution layer 
to realize the upscale procedure, which has been 
widely adopted in current SR models. Later, research-
ers introduced the concepts of residual connections 
(Wang et al. 2018) and dense connections (Zhang et al.  
2018b) to improve the optimization process.

2.1.2. Attention-based methods
To further enhance the representation capability of 
CNNs, a crowd of attention has been explored to 
guide the network to pay more attention to the critical 
features. Zhang et al. (2018a) proposed a residual 
channel attention network. After that, Niu et al. 
(2020) put forward to combine channel attention, 
layer attention, and spatial attention to residual block 
and achieve impressive performance. Recently, Mei, 
Fan, and Zhou (2021) proposed sparse non-local 
attention to increasing the respective of CNNs. 
Although such non-local operators can achieve decent 
performance in modeling the global features, the 
inherent limitation of CNNs still limits the 
performance.

2.1.3. Transformer-based methods
Inspired by the success of transformers in Natural 
Language Processing (NLP) tasks, transformers have 
also shown great potential in image restoration, due to 
the long-range modeling capability of self-attention 
(Wang et al. 2023). In particular, Yang et al. (2020) 
learned a texture transformer and obtained superior 
performance by transferring more global textures for 
SR. Liang et al. (2021) leveraged the swim-transformer 

architecture for image restoration. Chen et al. (2023b) 
proposed a hybrid attention network to activate more 
useful pixels in the SR process. Lu et al. (2022) develop 
an efficient transformer to save memory cost for light-
weight SR.

2.2. Remote sensing image super-resolution

In remote sensing scenarios, early efforts often 
employed hand-crafted prior (Pan et al. 2013) to tackle 
this issue. With the booming of deep learning, 
researchers began to reuse the model proposed for 
natural images by simply retraining them in remote 
sensing images (Jiang et al. 2018, 2019; Lei, Shi, and 
Zou 2020; Luo et al. 2017). However, these methods 
usually face challenges in effectively capturing both 
local and global features using naive convolutions. In 
addition, they barely consider the unique properties of 
remote sensing imagery, cross-scale characteristics in 
particular.

Subsequently, researchers begin to consider the 
unique characteristics of remote sensing images, and 
various elaborate structures have been developed to 
explore these valuable representations. Zhang et al. 
(2020b) proposed a scene-adaptive strategy to boot 
the generalization of SR models on various remote 
sensing scenes. To exploit the multi-scale knowledge 
in remote sensing images, Dong et al. (2020b) 
designed a multi-scale second-order attention net-
work. Similarly, Zhang et al. (2020a) put forward 
a mixed high-order attention network to explore the 
high-frequency information that is critical in remote 
sensing scenes. Dong et al. (2020a) proposed a dense- 
sampling network, which considers the multi-level 
priors and enhances them with a wide activation 
mechanism. Recently, Feng et al. (2022) developed 
a pyramid structure network to model multi-scale 
features for better SR. Lei and Shi (2022) explicitly 
considered cross-scale self-similarity with non-local 
attention. Wang et al. (2022c) introduced 
a lightweight lattice block for efficient SR of large- 
scale remote sensing images. Liang et al. (2023) 
employed the graph neural network for effective SR. 
Xiao et al. (2023a) introduced the diffusion model to 
restore realistic results. Although these methods paid 
more attention to the unique properties of remote 
sensing data, they still struggled to handle the explora-
tion of long-range features, especially the global cross- 
scale priors as shown in Figure 1. Many works (Wu, 
Hong, and Chanussot 2022, 2023) have explored and 
demonstrated the significance of cross-scale informa-
tion in remote sensing images, prompting us to place 
more emphasis on both local and global cross-scale 
knowledge.

More recently, the transformer has demonstrated 
the superior capability of modeling long-range repre-
sentations. Yao et al. (2023) proposed a novel 
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transformer framework by extending the conventional 
vision transformer into the multimodal domain. Tu 
et al. (2022) integrated a swim-transformer block into 
the Generative Adversarial Network (GAN) to boost 
the performance with the self-attention mechanism. 
Lei et al. (2022) employed self-attention to mine more 
global dependencies and enhance them in multiple 
stages. However, it is worth noting that remote sensing 
data often exhibits intricate cross-scale and hierarch-
ical distributions in both local and global features. 
Relying solely on single-scale characterizations can 
yield suboptimal results. Therefore, it is imperative 
to develop a systematic approach, which can compre-
hensively model both local and global information 
while fully considering the inherent cross-scale 
characteristics.

2.3. Transformer in remote sensing applications

In addition to super-resolution, transformer has 
demonstrated impressive performance in various 
remote sensing applications, such as classification, 
detection, segmentation, pan-sharpening, and change 
detection. Roy et al. (2023) incorporated the vision 
transformer into CNN and introduced a new multi-
modal fusion transformer network for image classifi-
cation. Li, Chen, and Zeng (2022) introduced 
a transfer CNN into a transformer for accurate object 
detection in large-scale remote sensing images. Wang 
et al. (2022a) developed a transformer-based network 
for efficient semantic segmentation. To reduce the 
spectral redundancy, Zhang et al. (2022a) exploited 
the channel reduction strategy and proposed 
a transformer-based network for pan-sharping. 
Chen, Qi, and Shi (2021) proposed a bitemporal 

transformer to explore the spatial-temporal context 
for change detection. All of these studies have demon-
strated the tremendous potential for the application of 
transformers in the field of remote sensing.

3. Methodology

3.1. Overview

As shown in Figure 2, our CHT comprises three main 
components: 1) Shallow feature extraction, which is 
responsible for mapping the low-resolution input ILR 

to a higher-dimensional feature space. 2) Deep feature 
extraction, where multiple transformer groups are 
employed to explore deep feature representations. 3) 
Reconstruction, which focuses on reconstructing the 
high-resolution output ISR.

3.2. Shallow and deep feature extraction

3.2.1. Shallow feature extraction
Formally, given a low-resolution input ILR 2 R H�W �3 

(H, W and 3 are the height, width and RGB channels 
number, respectively), we exploit a 3� 3 convolution 
Conv �ð Þ to extract a shallow feature F 0 2 R H�W �D , 
which means: 

F 0 ¼ Conv ILR� �
(1) 

where D represents the channel number.

3.2.2. Deep feature extraction
As illustrated in Figure 2, our deep feature extraction 
includes multiple cascaded transformer groups fol-
lowed by a 3� 3 convolutional layer, enabling us to 
effectively explore deep feature representations at local 

Figure 2. Overview of the proposed CHT, which consists of three parts: shallow feature extraction, deep feature extraction, and 
reconstruction.
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and global ranges. To ensure stable optimization, we 
incorporate a global connection. Let us denote the i-th 
transformer group as gi. The output of gi can be 
expressed as: 

F i ¼ gi F i� 1ð Þ; i ¼ 1; 2; � � � ; L (2) 

where F i� 1 is the output of gi� 1 and L is the number of 
transformer groups.

Within each transformer group, we incorporate 
several Cross-scale Hierarchical Transformer Blocks 
(CHTB) along with a 3� 3 convolutional layer. The 
CHTB is a well-designed module that effectively 
models global and local cross-scale representations 
through the utilization of hierarchical CSA and 
CCA. Additionally, inserting a convolutional layer 
at the end of the CHTB helps to introduce more 
inductive bias to the transformer for better 
reconstruction.

3.3. Cross-scale hierarchical transformer block

Given an input feature F i;0 to the 1-st CHTB in the i- 
th transformer group, denoted as hi;1, the output of hi;j 

can be formulated as follows: 

F i; j ¼ hi;j F i; j� 1
� �

; j ¼ 1; 2; � � � ;M (3) 

where M is the number of CHTB in each transformer 
group. As depicted in Figure 2, in each CHTB, we first 
use a 3� 3 convolution to extract intermediate fea-
tures from the input. Next, the intermediate features 
are split along the channel dimension, and these split 
feature maps are fed into the hierarchical CSA and 
CCA modules. The CSA module captures global cross- 
scale dependencies, allowing the model to leverage 
prior knowledge about long-range interactions. On 
the other hand, the CCA module focuses on capturing 
local cross-scale dependencies, enabling the model to 
emphasize the importance of channel-wise interac-
tions within each scale. After obtaining the outputs 
from the CSA and CCA modules, the results are 
merged using the summation operator to combine 
the global and local cross-scale information effectively. 
Finally, a Multi-Layer Perceptron (MLP) network is 
employed to perform feature feed-forward, further 
enhancing the learned representations and preparing 
them for the subsequent CHTB.

3.3.1. Cross-scale self-attention
Taking inspiration from the insights presented in 
Figure 1, we aim to capture global cross-scale similar-
ity using the proposed CSA. Figure 3 illustrates the 
structure of CSA. Instead of directly computing self- 
attention from query-key pairs, we introduce a scale 
compress as an intermediate operator to implicitly 
calculate the cross-scale self-similarity. In particular, 
given an input X 2 R C�HW , the standard tokens in 

transformer, i.e., Q (query), K (key), and V (value), 
can be obtained with linear projection:

Q;K;V ¼ Emb Xð Þ (4) 

where Emb �ð Þ is set to a fully-connected layer. In our 
work, we introduced an additional token denoted as S, 
which enables self-attention operations at different 
resolutions. This allows us to explore cross-scale glo-
bal dependencies across different token spaces. To 
achieve this, we compress the input feature map X 
with a scale factor s, denoted as S ¼ CompressðX; sÞ. 
The compression operation is performed using a fully 
connected layer. Later, the cross-scale self-attention is 
conducted using Equation (5): 

M1 ¼ σ
Q � ST

λ

� �

;M2 ¼ σ
K � ST

λ

� �

(5) 

where M1 2 R
HW
s2
�HW and M2 2 R

HW�HW
s2 are two 

learnable intermediate attention matrix yielded from 
different scales, σ means softmax function, and 
λ ¼

ffiffiffiffi
C
p

is a temperature parameter. The attention 
M2 is used to distill V into a intermediate feature 
Z 2 R

C�HW
s2 . Finally, the attention M1 expands the 

dimension of Z and generates the output 
Y 2 R C�HW . These processes can be formulated by 
the following: 

Y ¼ V �M2ð Þ �M1 (6) 

3.3.2. Cross-scale channel attention
As shown in Figure 2, given an input of P 2 R C�H�W , 
we firstly set three parallel convolutions with different 
kernel sizes to explore the multi-scale features: 

P1 ¼ f3�3 Pð Þ;P2 ¼ f5�5 Pð Þ;P3 ¼ f7�7 Pð Þ (7) 

Figure 3. The diagram of the proposed CSA.

GEO-SPATIAL INFORMATION SCIENCE 5



where fk�k means a convolution layer with kernel size 
of k. Subsequently, channel attention is adopted to 
explore the cross-scale correlation. Take 
P1;2 ¼ P1 þ P2 as an example, the attention map att1 
can be generated by the following: 

att1 ¼ σζ P1;2
� �

(8) 

where ζ is a squeeze operation achieved by a 3� 3 
convolution and a global pooling layer, σ denotes soft-
max activation. Similarly, we could obtain the cross- 
attention att2 from P2;3 ¼ P2 þ P3. Subsequently, we 
enrich the interaction of cross-scale features with 
Equation (9): 

P4 ¼ P1;2 � att1 þ P2;3 � att2 þ P1 þ P2 þ P3 (9) 

In the end, another channel attention is employed to 
generate the final cross-scale feature O: 

O ¼ P4 � σζ P4ð Þ (10) 

3.4. Reconstruction

In the reconstruction process, the widely used pixel- 
shuffle layer (Shi et al. 2016) is adopted to upscale the 
spatial size of deep feature F out, it can be formu-
lated by: 

F out ¼ F 0 þ Conv F Lð Þ (11) 

where F 0 is the shallow feature and F L means the 
deep feature from the last transformer group. Before 
pixel-shuffle layer PS �ð Þ, a 3� 3 convolution is used to 
increase the channel dimension. In the end, the super- 
resolved output ISR 2 R Hr�Wr�3 can be obtained: 

ISR ¼ PS Conv F outð Þð Þ (12) 

where r is the scaling factor.

4. Experiment

4.1. Remote sensing datasets

We choose four widely used benchmarks in the 
remote sensing field to evaluate the SR performance, 
including the AID (Xia et al. 2017) and NWPU- 
RESISC45 (Cheng, Han, and Lu 2017) dataset used 
for scene classification task and DOTA v1.0 (Xia et al.  
2018), and DIOR (Li et al. 2020) dataset designed for 
objection detection tasks. Among them, AID is used to 
build the training and test sets. The remainder datasets 
are employed for model tests. Note that we do not 
perform simulated degradation on the NWPU- 
RESISC45 dataset and only adopt it to evaluate the 
models on real-world degradations. Table 1 reports 
the details of these datasets. Moreover, some typical 
samples in these datasets are shown in Figure 4.

4.2. Implementation details

4.2.1. Model details
In this study, we focus on four times SR for remote 
sensing imagery, i.e., r ¼ 4. For the design of our 
CHT, in the deep feature extraction process, we 
employed six transformer groups to explore deep fea-
ture representations. The number of CHTB within 
each transformer group was dynamically set as fol-
lows: 4; 4; 8; 8; 4; 4. This configuration allowed us to 
effectively utilize cross-scale knowledge to enhance the 
performance of the model. The channel dimension of 
CHT is set to 180. During self-attention calculation, 
the head number is fixed to three.

4.2.2. Training details
For a fair comparison, all SR methods involved in this 
paper were retrained from scratch on the AID training 

Table 1. An introduction of four datasets involved in this paper.
Data name Experiments Usage Pixel size Image numbers Resolution Categories Tasks

AID Simulated train, test 512� 512 3000, 900 0.8−8m 30 Classification
DOTA v1.0 Simulated test 512� 512 900 − 15 Detection
DIOR Simulated test 512� 512 1000 − 20 Detection
NWPU-RESISC45 Real-world test 128� 128 315 0.2−30m 45 Classification

Figure 4. Some typical samples from (a) AID, (b) DOTA v1.0, (c) DIOR and (d) NWPU-RESISC45 datasets.
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set without any pre-training and fine-tuning process. 
During the training process of our CHT, we randomly 
selected four LR image patches in each mini-batch and 
also augmented them by 90°, 180°, and 270° rotation 
and flipping. The patch size is set to 64� 64. To 
optimize our CHT, the widely used L1 loss is adopted 
as the objective function, which measures the pixel- 
wise distance between the super-resolved image ISR 

and the ground-truth image IHR. In particular, 
L1 ¼ IHR � ISR

�
�

�
�

1. We used Adam optimizer to train 
our CHT with a fixed learning rate of 10� 4. All the 
experiments were conducted on a single NVIDIA RTX 
3090 GPU with 24 GB memory and a 3.40 GHz AMD 
Ryzen 5700X CPU.

4.3. Evaluation metrics

In the experiments conducted on simulated data, we 
utilize two classical full-reference metrics, Peak Signal- 
to-Noise Ratio (PSNR), and Structural Similarity 
Index (SSIM), to quantitatively evaluate the perfor-
mance of the SR method. These metrics provide an 
objective assessment of the fidelity of the restored 
image. It is important to note that for the calculation 
of PSNR and SSIM, we consider only the luminance 
channel (Y channel) of the YCbCr color space. Higher 
PSNR and SSIM values indicate a higher level of fide-
lity in the restored image. In our experiments with 
real-world data, we employ two non-reference 
metrics, as the ground truth image is unavailable. 
The first indicator is the Average Gradient (AG), 
which measures the high-frequency details present in 
an image. A higher AG value indicates better preser-
vation and enhancement of high-frequency compo-
nents in the restored image. Additionally, we employ 
the Natural Image Quality Evaluator (NIQE) (Mittal, 
Soundararajan, and Bovik 2012) to evaluate the per-
ceptual quality of the SR results. Lower NIQE scores 
indicate better perceptual quality in the restored 
image.

4.4. Experiments on simulated data

4.4.1. Selected methods for comparison
In this section, we compare our CHT with the follow-
ing 11 typical SR models, including eight methods 
used for natural images: Bicubic interpolation, 
SRCNN (Dong et al. 2015), VDSR (Kim, Kwon Lee, 
and Mu Lee 2016), SRResNet (Wang et al. 2018), 
EDSR (Lim et al. 2017), RDN (Zhang et al. 2018b), 
HAN (Niu et al. 2020), NLSA (Mei, Fan, and Zhou  
2021), and three state-of-the-art models developed for 
remote sensing imagery: RSINet (Feng et al. 2022), 
HSENet (Lei and Shi 2022), TransENet (Lei, Shi, and 
Wenjing 2022). In particular, SRCNN and VDSR 
adopt shallow and deep convolution for 

reconstruction. EDSR is a classical method, which 
expands the width of CNN by a wide activation strat-
egy. Note that EDSR won the first prize in SR tracking 
in NTIRE 2017. SRResNet and RDN upgrade the CNN 
with residual and dense connections. SRResNet and 
RDN improve the non-linear fitting capability of CNN 
by residual and dense connection, respectively. HAN 
proposes to use holistic attention for local feature 
modeling. NLSA devises a non-local sparse attention 
to exploring the global features. In models specifically 
designed for remote sensing images, RSINet and 
HSENet both exploit cross-scale knowledge with pyr-
amid structure and non-local attention. TransENet is 
a transformer-based approach. Following their official 
implementation details, we retrained these models 
from scratch for a fair comparison. Notably, we also 
perform a self-ensemble strategy in the test phase to 
further boost the performance of our CHT, and we 
denote it as CHT+.

4.4.2. Quantitative comparison
Table 2 presents the quantitative comparisons 
between our CHT and 11 typical models on the AID 
test set for a scale factor of four. The best and second 
best PSNR/SSIM performance are highlighted in red 
and blue, respectively. It is observed that RDN, EDSR, 
RSINet, HSENet, and TransENet have achieved com-
petitive results on the AID dataset, surpassing meth-
ods proposed as early as five years ago, such as 
SRCNN, VDSR, and SRResNet. These results highlight 
the importance of modeling local or global features for 
improved SR. Comparatively, our CHT demonstrates 
the best performance on almost all 30 scene types, 
surpassing the second-best model, TransENet, by 
0.11 dB in terms of PSNR. This indicates the super-
iority of our CHT in various remote sensing scenarios.

In Table 3, we further test these models on DOTA 
v1.0 and DIOR test sets. The PSNR/SSIM results 
demonstrate that our CHT+ outperforms all the 
comparative networks. For example, CHT+ achieves 
a higher PSNR than NLSA by 0.2 dB and surpasses 
TransENet by 0.14 dB. Even without the self- 
ensemble strategy, our CHT still achieves the best 
performance on both the DOTA v1.0 and DIOR 
datasets. Note that NLSA utilizes non-local attention 
to explore global features, which are less powerful 
compared to our cross-scale self-attention mechan-
ism in capturing long-range dependencies. Although 
TransENet exploits self-attention to enhance perfor-
mance, CHT can still surpass it by a large margin. 
The main reasons may lie in 1) the proposed cross- 
scale self-attention not only grasps the valuable glo-
bal prior knowledge but also considers the cross- 
scale properties of similar ground objects, and 2) 
the hierarchical CSA and CCA in our CHT effec-
tively benefit both local and global hierarchies in 
remote sensing imagery.
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Table 2. Quantitative results on AID test set. Here we report the PSNR/SSIM performance of SISR models on 30 classes of scenes. 
The best and second best metrics are shown in red bold and blue bold, respectively.

Table 3. Quantitative comparisons with 11 typical SR models on DOTA v1.0 and DIOR test sets. The best and second best PSNR/ 
SSIM results are highlighted in red and blue.
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4.4.3. Qualitative comparison
In Figure 5, we visually exhibit the reconstruction 
results of these models on the AID test set. Note 
that we choose two airport scenes with rich cross- 
scale global features, (e.g., cross-scale similarity of the 
plane) to better investigate the challenges in remote 
sensing scenes. From these results, we can find that 
our CHT can always restore the accurate and sharp 
details of the planes, while other existing CNN and 
Transformer-based methods struggle with severe 
high-frequency loss and artifacts, leading to blurry 
results and incomplete shapes of the planes. For 
example, in the “airport_108” image, existing CNN 
and Transformer-based methods obtain heavy blurs 
and fail to recover the entire shape of the planes. 
Despite HSENet generating some high-frequency 
details, such as the airfoil, it still can not predict the 
correct boundary of the plane, and even mix the small 
plane with the background. In contrast, CHT suc-
cessfully recovers the complete shape of the plane 
and distinguishes it from the background without 
color distortion. These results demonstrate CHT 
can effectively explore valuable cross-scale local and 
global priors, which aligns with the motivation 
behind our CHT.

Furthermore, Figures 6 and 7 illustrate some 
typical scenes in DOTA v1.0 and DIOR, respec-
tively. From the ground lines in Figure 6, it 
appears that the comparative methods struggle 
with severe artifacts, producing incorrect shapes 
and distorted textures for the ground lines. Only 
our CHT achieves visually pleasing results, accu-
rately recovering the realistic distribution of the 

lines. This demonstrates the effectiveness of our 
proposed cross-scale channel attention in success-
fully extracting local features, such as edges and 
outlines. Similarly, in Figure 7, which contains 
massive cross-scale storage tanks, NLSA and 
HSENet, despite their ability to explore non-local 
representations, still struggle with handling such 
challenging scenes and producing deformed and 
blurry results. On the other hand, our CHT, ben-
efiting from cross-scale self-attention, can fully 
explore and exploit valuable priors for better 
restoration. These visual comparisons provide 
further evidence of the superiority of our CHT in 
capturing fine details, preserving realistic distribu-
tion, and handling complex scenes with cross-scale 
features.

4.5. Experiments on real-world data

We further test the performance of these methods by 
applying them to the NWPU-RESISC45 dataset with 
realistic degradations.

4.5.1. Qualitative comparison
Table 4 presents the AG and NIQE results on 
NWPU-RESICS45 dataset. Based on the observa-
tions from Table 4, our CHT achieves the best 
performance in AG and secures second place in 
NIQE. These results demonstrate that our CHT 
remains competitive in addressing the SR problem 
in real-world scenarios. Notably, we find that 
VDSR achieves the best performance in NIQE. 

Figure 5. Visual comparisons on the AID test set, where the selected scenes contain rich cross-scale similarities. The best PSNR/ 
SSIM is shown in bold. Zoom in for better comparison.
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This could be attributed to the complex degrada-
tions present in realistic scenes, which may inter-
fere with the attention and transformer-based 
approaches employed by other methods. In this 
case, our CHT proves its favorable visual percep-
tion, showcasing the robust local and global mod-
eling capabilities of the proposed CCA and CSA.

4.5.2. Quantitative comparison
The visual comparisons are shown in Figure 8, 
where the selected images contain rich global and 

local hierarchies. From “church_347” from the 
NWPU-RESISC45 dataset, we find that TransENet 
cannot recover the global similarity, even with the 
assistance of self-attention. In contrast, our CHT 
provides more details with rich textures, resulting 
in a visually appealing restoration. As illustrated in 
“parking_lot_65”, where the marking lines on the 
ground are present, CNN-based and transformer- 
based methods fail to restore all of the lines accu-
rately. However, our CHT preserves more sharp 
information on these lines. These results indicate 

Figure 6. Visual comparisons on the DOTA v1.0 test set, where the selected scenes contain rich cross-scale local details (e.g., cross- 
scale ground lines). The best PSNR/SSIM is shown in bold. Zoom in for better comparison.

Figure 7. Visual comparisons on the DIOR test set, where the selected scenes contain rich cross-scale global priors (e.g., cross-scale 
storage tanks). The best PSNR/SSIM is shown in bold. Zoom in for better comparison.

Table 4. Quantitative comparisons with typical SR models on the NWPU-RESICS45 test set. The best and second best AG and NIQE 
results are highlighted in red and blue.
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that our CHT maintains its superiority in handling 
real-world scenes with complex degradations, pro-
viding stable and generalized performance for 
remote sensing image SR.

4.6. Ablation study

To save inference costs, we conduct all these ablation 
analyses on a small-scale validation set and dub it 
AID-tiny. It contains 30 images, with each image 
randomly selected from a category of AID, and does 
not repeat in the training and test set.

4.6.1. Hierarchical modeling
4.6.1.1. Effect of cross-scale self-attention. In 
Table 5, we report the quantitative comparison 
between the proposed CSA with the initial Window- 
based Self-Attention (WSA) for four times SR on the 
AID-tiny dataset. By comparing Model-A with our 
CHT, we can see that utilizing CSA to capture global 
features leads to a significant improvement in perfor-
mance compared to using the single-scale WSA 
(28.2269 dB vs. 28.1033 dB). This improvement can 
be attributed to the cross-scale design of CSA, which 
enables the model to explore more prior knowledge, 
such as cross-scale self-similarity.

Besides, we visualize the training process of Model- 
A (pink) and our CHT (red) in Figure 9. It can be 
found that the PSNR curve of our CHT grows signifi-
cantly against Model-A, demonstrating the effective-
ness of our CSA.

4.6.1.2. Effect of cross-scale channel attention. To 
evaluate the effect of CCA, we compare it with the 

naive Single-scale Channel Attention (SCA) block. 
The quantitative results are listed in Table 5. The 
results show that incorporating CCA in our CHT 
leads to a noticeable improvement in performance 
compared to SCA (0.1002 dB higher in PSNR). This 
improvement can be attributed to the fact that while 
channel attention is capable of modeling local features, 
it neglects the cross-scale properties present in remote 
sensing imagery. Consequently, relying solely on SCA 
results in suboptimal performance.

Furthermore, our CHT outperforms the baseline 
model that also adopts hierarchical modeling. This 
result suggests that our CSA and CCA can mutually 
promote each other, leading to improved modeling of 
image hierarchies.

4.6.1.3. Feature visualization. More intuitively, we 
visualize the intermediate feature maps from local 
and global branches in our CHTB. For better visuali-
zation, three typical scenarios with rich global and 
local cross-scale knowledge are sent to our CHT. The 
results are shown in Figure 10. From this figure, we 
can find that local features are prominent in localities, 
such as edge, boundary, and shape information. On 
the other hand, the features yielded from global cross- 
scale attention tend to activate more cross-scale 

Figure 8. Visual comparisons on the NWPU-RESICS45 test set with real-world degradations, where the selected scenes contain rich 
cross-scale global and local similarities. Zoom in for better comparison.

Table 5. Effect of CSA and CCA. The PSNR performances are 
calculated on the AID-tiny dataset and the best result is shown 
in bold.

Global Modeling Local Modeling

Method WSA CSA SCA CCA PSNR (dB)

Baseline ✓ ✓ 28.0994
Model-A ✓ ✓ 28.1033
Model-B ✓ ✓ 28.1267
CHT (Ours) ✓ ✓ 28.2269

Figure 9. The training process of the effect of CSA and CCA. 
The models are validated on the AID-tiny dataset.
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regions in the global context. This result aligns with 
our motivation, which demonstrates that the proposed 
CHT can systematically explore both local and global 
cross-scale knowledge.

4.6.2. Cross-scale modeling
4.6.2.1. Effect of different scale s in CSA. The key 
hyper-parameter of our CSA is the scale s of the addi-
tion token S. To investigate the impact of different 
scale values, we empirically set s to 1, 2, 4, and 8 and 
evaluate the performance on the PNSR metric, as 
depicted in Figure 11. The results indicate that setting 
s ¼ 2 achieves the best PSNR performance. When 
s ¼ 1, the scale of S aligns with that of Q and K, 
resulting in self-attention calculations within two sin-
gle-scale feature spaces. This limitation fails to explore 
the cross-scale global dependency effectively. Once the 
scale is large, e.g., s ¼ 8, we observed that the 

performance dropped dramatically. This is mainly 
attributed to the loss of global information when com-
pressing the feature space too much. Based on these 
empirical findings, we set s ¼ 2 in our final CHT 
model as it offers the best performance.

4.6.2.2. Effect of difference scale in CCA. To evalu-
ate the effectiveness of the multi-scale design, we 
conducted an experiment by replacing the multi- 
scale convolution in CCA with three single-scale 
convolutions: 3� 3, 5� 5, and 7� 7. The results in 
Table 6 demonstrate that the single-scale convolu-
tions can only explore limited representations. In 
comparison, our CHT outperforms Model-C, 
Model-D, and Model-E by 0.1002 dB, 0.0614 dB, 
and 0.0921 dB in PSNR, respectively. This indicates 
that the cross-scale design of our CHT effectively 
extracts enriched local details, leading to superior 
reconstruction.

4.6.3. Model efficiency
We first investigate the different number of transfor-
mer groups NTG and cross-scale hierarchical transfor-
mer blocks NCHTB used in our CHT. The 
computational cost and PSNR results are reported in 

Figure 10. Feature visualization of the hierarchical modeling.

Figure 11. The training process of the effect of different values 
of s in CSA. The models are validated on the AID-tiny dataset.

Table 6. Effect of cross-scale in CCA. The results are tested on 
AID-tiny and the best PSNR is shown in bold.

Scale Model 3� 3 5� 5 7� 7 PSNR (dB)

Single Model-C ✓ 28.1267
Model-D ✓ 28.1655
Model-E ✓ 28.1348

Cross CHT (Ours) ✓ ✓ ✓ 28.2269
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Table 7 and 8. We observed that NTG ¼ 6 yields the 
best PSNR performance. As NCHTB increases, the cap-
ability of local and global cross-scale modeling also 
improves. However, the computational consumption 
also increases dramatically. Although the best PSNR 
result is achieved with NCHTB ¼ 8, we choose 
NCHTB ¼ 4 as the final setting because it provides 
competitive performance while consuming less 
computation.

Table 9 provides the number of parameters, the 
FLOating Point operations (FLOPs), and the PSNR 
performance of each model on the AID test set. 
Intuitively, the relationships between PSNR perfor-
mance and computational cost are shown in 
Figure 12. The observations reveal that earlier 

methods, which did not consider local and global 
feature modeling and only employed naive CNNs, 
have fewer parameters and limited performance. 
However, with the introduction of attention 
mechanisms, such as holistic attention and non- 
local attention, both local and global information 
are fully exploited, resulting in significant perfor-
mance improvement. Nevertheless, the number of 
parameters of these models also increases by 
a large margin. In comparison to the NLSA 
approach, which utilizes non-local attention for glo-
bal modeling, our CSA is superior (30.91 dB vs. 
30.81 dB) without excessively increasing the compu-
tational complexity (20.53 M vs. 44.15 M). This ana-
lysis highlights that our CHT strikes a good balance 
between local-global modeling and efficiency.

5. Conclusions

In this paper, we propose an effective transformer- 
based SR model to mitigate the shortcomings of exist-
ing methods when applied to remote sensing imagery. 
Our CHT aims to systematically model both local and 
global representations by designing a hierarchical 
transformer group that incorporates CSA and CCA. 
To facilitate the representation of cross-scale global 
knowledge in remote sensing scenes, we introduce an 
additional token space for implicit self-attention cal-
culation. This auxiliary token allows for the indirect 
computation of self-attention in two sub-spaces with 
different feature scales, thereby enabling self-attention 
to be aware of cross-scale dependencies. Moreover, we 
devise a cross-scale channel attention mechanism that 
explores multi-scale features and enriches them with 
channel attention in a coarse-to-fine manner. The 
extensive experiments on four remote sensing datasets 
demonstrate the superiority of our CHT in grasping 
the local and global features, both in simulated and 
real-world data.

Despite achieving decent performance on simula-
tion experiments, remote sensing imagery usually suf-
fers from various degradations (Hong et al. 2018), 

Table 7. The ablation of different numbers of transformer 
groups. The best PSNR performance is shown in bold.

NTG 2 4 6 8

FLOPs (G) 144.7 230.5 322.3 412.2
PSNR (dB) 30.63 30.79 30.91 30.90

Table 8. The ablation of different numbers of CHTB. The best 
PSNR performance is shown in bold.

NCHTB 2 4 6 8

FLOPs (G) 180.6 322.3 463.1 603.8
PSNR (dB) 30.78 30.91 30.87 30.94

Table 9. Model efficiency analysis. FLOPs are calculated with an 
input image of size 128� 128� 3. 1 M = 106 and 1 G = 109. 
Note that the PSNR is tested on the AID test set and the best 
performance is shown in bold.

Method Parameters FLOPs PSNR (dB)

Bicubic − − 28.86
SRCNN 0.021 M 0.328 G 29.70
VDSR 0.667 M 10.93 G 30.44
SRResNet 0.734 M 23.13 G 30.51
EDSR 43.09 M 823.3 G 30.65
RDN 22.27 M 372.4 G 30.74
HAN 16.07 M 268.0 G 30.80
NLSA 44.15 M 840.8 G 30.81
RSINet 14.61 M 388.0 G 30.78
HSENet 21.70 M 306.3 G 30.72
TransENet 37.46 M 87.85 G 30.80
CHT (Ours) 20.53 M 322.3 G 30.91

Figure 12. Comparison of computational complexity.
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which may lead to several performance drops in our 
CHT. As investigated in previous research (Liu et al.  
2022; Xiao et al. 2023d), when handling multiple 
degradations, the model trained on simulated data 
often lacks universal and generalizability. This is 
because there is a domain gap between single degrada-
tion (e.g., bicubic downsampling) and real-world 
degradations, such as blur and noise. In future work, 
more efforts should be paid to develop a practical 
scheme for real-world remote sensing image SR, thus 
mitigating the performance drop when handling mul-
tiple degradations, such as blur and noise. 
Furthermore, lightweight SR may be another hotspot, 
especially in the context of real-time inference on 
large-scale remote sensing images.
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