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A B S T R A C T

Over the past few years, single image super-resolution (SR) has become a hotspot in the remote sensing area,
and numerous methods have made remarkable progress in this fundamental task. However, they usually rely
on the assumption that images suffer from a fixed known degradation process, e.g., bicubic downsampling.
To save us from performance drop when real-world distribution deviates from the naive assumption, blind
image super-resolution for multiple and unknown degradations has been explored. Nevertheless, the lack
of a real-world dataset and the challenge of reasonable degradation estimation hinder us from moving
forward. In this paper, a self-supervised degradation-guided adaptive network is proposed to mitigate the
domain gap between simulation and reality. Firstly, the complicated degradations are characterized by
robust representations in embedding space, which promote adaptability to the downstream SR network with
degradation priors. Specifically, we incorporated contrastive learning to blind remote sensing image SR, which
guides the reconstruction process by encouraging the positive representations (relevant information) while
punishing the negatives. Besides, an effective dual-wise feature modulation network is proposed for feature
adaptation. With the guide of degradation representations, we conduct modulation on feature and channel
dimensions to transform the low-resolution features into the desired domain that is suitable for reconstructing
high-resolution images. Extensive experiments on three mainstream datasets have demonstrated our superiority
against state-of-the-art methods. Our source code can be found at https://github.com/XY-boy/DRSR
. Introduction

With the growing demand for fine-grained remote sensing applica-
ions, high-resolution remote sensing imagery is playing an indispens-
ble and increasingly important role in downstream tasks [1], including
lassification [2–4], fine-scale land-cover mapping [5–7], hyperspectral
pplications [8–10], etc. However, breaking through the hardware
imitations to obtain high-resolution remote sensing imagery is a la-
orious task. Fortunately, super-resolution (SR) technology provides
n effective and economical alternative, which aims to reconstruct
atent high-resolution (HR) images from existent low-resolution (LR)
bservations [11–15].

Years of effort have brought remarkable progress in remote sensing
mage super-resolution [11,16], especially the success of deep-learning-
ased methods in many areas [17–27]. Nevertheless, state-of-the-art
R models often suffer from less generalization to real-world images,
lthough decent results have been achieved in pre-defined synthetic
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data. To mitigate the domain gap between simulation and reality, a
general method is urgently required to cope with images with multiple
and unknown degradation factors. In Fig. 1, we display visual compar-
isons of classical SR and real-world SR to better understand the domain
gap.

A straightforward solution is to build an external dataset that covers
general degradation. Recently, several real-world datasets [28,29] in
computer vision field have been proposed. They construct paired LR-
HR images through careful manipulation on advanced digital devices.
However, building such a dataset is time-consuming and also fragile on
aerospace sensors. For example, [30] collected Sentinel-2 and Planet
images to build a paired dataset. Although images acquired at different
satellite platforms are georeferenced, they undergo a problem of mis-
alignment since data acquisition moments are not strictly consistent.
Besides, the land cover between moments of paired images may already
change. Further, more efforts have been paid to learning internal prior
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information before conducting super-resolution. The learned prior is
required to guide the downstream SR network to learn how to adapt to
various degradation distributions. [31] trained a fully-supervised kernel
prediction subnetwork to express blur kernel code from an LR input.
However, they explicitly rely on ground-truth blur kernels in the kernel
pool, which limits the generalization since we cannot collect all the blur
kernels due to complicated variations among different remote sensing
scenarios.

To overcome the problems mentioned above, some semi-supervised
[32,33] approaches are explored. These methods either learn prior
information by self-supervised training in a degradation label-free man-
ner or develop effective domain adaption methods to improve the
generalization of SR procedure. Because of the diverse degradation
factors, entangled degradations cannot be expressed precisely. Note
these approaches mainly incorporated unstable training strategy with
limited scopes [33,34] or require a huge memory cost [32] to tame
optimization instability of cross-domain learning, which do not prop-
erly represent the degradation information in remote sensing imagery.
In addition, it is also crucial to establish an effective feature adaption
framework to transform LR features to some domain that is suitable for
reconstructing HR images. Various studies [35–38] have demonstrated
that fusing internal prior information can promote the performance of
a visual task. This motivates us to learn the internal degradation prior
to guiding the SR process.

Towards this end, we propose a self-supervised degradation-guided
adaptive network that incorporates contrastive learning to express
robust degradation representations, which synergetically help super-
resolution procedures adapt to various degradation distributions. Ide-
ally, we assume that an image contains multiple patches with similar
degradations, while degradations vary among different images due to
object scale and scene variations. Thus, the degradation representations
extracted from the same image can be treated as positive pairs (rele-
vant information), and those from different images constitute negative
pairs. Therefore, we can introduce a contrastive learning strategy to
generate discriminative representations of different degraded images
in the embedding feature space to achieve the adaptive representa-
tion of degradations. Specifically, we proposed a multi-view sample
augmentation strategy to extract sufficient contrastive samples in a
minibatch, which saves us from demanding a memory bank to cache
negative samples. In addition to this, we further encode and project
these samples into embedding space to encourage the positive em-
beddings (i.e., similar degradation distributions) closer while pushing
the negatives (i.e., dissimilar degradations) away. Finally, a dual-wise
feature modulation network is developed to achieve effective feature
transformation in channel and feature dimension. To sum up, our
contribution is four-fold:

(1) We proposed a simple and effective self-supervised degradation
representation learning strategy which characterizes the robust
and discriminative representations in the embedding space with
contrastive learning.

(2) The proposed network can be comfortably applied to arbi-
trary remote sensing imagery without tedious degradation la-
bels. The learned representations can promote cross-domain
super-resolution generalization.

(3) A dual-wise feature modulation network was developed to adap-
tively transform low-resolution features into a desired domain
which is suitable for reconstruction.

(4) Extensive experiments on three mainstream remote sensing
datasets demonstrate that our method performs favorably against
existing classical and real-world super-resolution approaches on
simulated and real-world images.

The remaining section of this paper is organized as follows. Sec-
tion 2 reviews single image super-resolution and its related work on
remote sensing imagery. In Section 3, we present the datasets involved
in this paper and the key components of the proposed framework.
Section 4 contains comprehensive experiments, and in Section 5 we
summarize the whole paper.
298
Fig. 1. Visual comparison of (c) classical SR and (d) real-world SR. There is a domain
gap between their outputs, which is caused by applying a pre-trained non-blind model
(bicubic downsampling) to LR input with multiple degradations (blur & noise).

2. Related work

In this section, we first briefly review the classical single-image
super-resolution as it lays the foundation for blind super-resolution.
Then we focus on blind super-resolution and its progress on remote
sensing imagery.

2.1. Deep learning-based classical single image super-resolution

With the success of convolution neural network (CNN) [39], CNN-
based SISR methods are booming. After that, researchers worked on
deepening [40] and widening [41] the network design. Subsequently,
attention mechanisms [42,43] have been widely deployed in SISR
network to further promote their capabilities. In this period, some gen-
erative adversarial network (GAN) -based methods [44] and projection-
based methods [45] were also proposed. Besides, the basic components
of the network are no longer limited to the residual convolution blocks,
but also contain dense blocks [46,47]. Recently, transformer-based
methods [48,49] have received impressive performance because trans-
former is better at extracting local and global dependencies. At present,
the classical SISR under bicubic-downsampling degradation is ma-
ture, and further research for multiple and unknown degradations has
become a hotspot.

2.2. Deep learning-based blind image super-resolution

Once we have an external dataset with practical distributions, the
complicated non-linear relationship between multi-degraded LR images
and HR images can also be parameterized in the CNN to some extent. As
mentioned before, it is not an easy task to establish a well-generalized
dataset, which makes us focus on learning the internal degradation
information in low-resolution images. Depending on whether apparent
degradation estimation is performed, these kinds of methods can be
subdivided into explicit and implicit degradation modeling.

Explicit degradation modeling. Early work [50] concatenated fea-
ture maps derived from explicit blur kernels into LR image features to
achieve adaption. These methods allow partial feature transformation
but are not sophisticated and thus have limited capacity.

Later, researchers [51,52] start introducing the maximum a pos-
teriori (MAP) algorithm to decompose this inverse problem into two
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sub-problems of deblur and super-resolution. For instance, [52] pro-
posed a deep Unfolding Super-resolution Network (USRNet) to jointly
optimize the two sub-problems by unfolding the iterative optimization
process. Since these methods rely heavily on initial degradation esti-
mates, their performance will drop dramatically due to the mismatch
between the input and actual estimation. Therefore, some works try
to alleviate this drawback by unifying the process of degradation esti-
mation into a trainable network. [53] established a framework (IKC) to
iteratively approach the estimated kernel to the correct kernel. In addi-
tion, they further proposed a spatial feature transformation (SFT) layer
to better transform the degradation information into features, which
is more effective than the direct concatenation used in SRMD [50].
Recently, the deep alternating network (DAN) [54] promoted the IKC
by jointly optimizing its corrector and SR network. However, this iter-
ative correction-based approach tends to be unstable with the number
of iterations. To produce more accurate and robust degradation esti-
mates, [32] presented a single propagation network without iterative
correction, which adopts a sub-network to learn the latent degradation
representation adaptively. Recently, some researchers have tried to sta-
bilize the degradation estimation process with mathematical prior. [55]
proposed a probabilistic degradation model (PDM) to learn degra-
dation distribution by a random prior. [56] introduced least-squares
constraints for degradation modeling.

Moreover, some attempts have been made to model degradation
distributions from real-world data. [57] built a generalized kernel pool
and then generated LR-HR training pairs through real degradation
kernels on this pool. Nevertheless, they still fail to cope with arbitrary
inputs that deviate from their kernel pool. Therefore, several works
proposed degradation-specific learning at the image level. In 2019, [34]
exploited GAN (KernelGAN) to super-resolve an LR input and then
adopted a discriminator to judge whether the patch distribution in the
super-resolved image is consistent with the original LR image. Another
model named ZSSR [58] can realize image-specific super-resolution
through zero-shot learning.

Implicit Degradation Modeling. Such methods mainly engaged in
grasping domain distribution with the help of external datasets. [59]
proposed a cycle-in-cycle GAN (CinCGAN) to transform arbitrary LR
images into the classical bicubic-downsampling domain. Thus, they
can perform non-blind SR with an optional state-of-the-art network. In
addition, [60,61] put forward to realize domain adaptation from HR
to LR by learning the degradation process. In degradation GAN [62],
the conventional pixel-level loss function was reformed to focus on the
sparse high-frequency information to ease the stress of across-domain
learning.

In summary, the explicit degradation modeling methods represent
mainstream because they are clear and easy to deploy, and the capa-
bility to appropriately express complicated degradations is crucial to
their performance. As mentioned in previous work [63], the GAN-based
implicit degradation modeling approaches are easy to collapse and may
cause harmful artifacts in real-world images.

2.3. Remote sensing image super-resolution

On remote sensing imagery, the progress of SISR is roughly in line
with computer vision. In particular, we need to make more efforts to
explore and analyze the specialty of remote sensing imagery. Early
work often simply transferred the models on natural images [64,65]
to remote sensing imagery. Later, sophisticated methods [66–68] that
integrate remote sensing properties have achieved significant results.
Although remarkable progress has been made on bicubic downsam-
pled remote sensing imagery, these non-blind methods still struggle
to generalize visual-pleasing results for practical images with blur and
noise. Until recently, researchers have paid more attention to blind
super-resolution on remote sensing imagery.

Some researchers suggested collecting multi-temporal imagery cap-
299

tured across different sensors (different spatial resolutions) in the same 𝑅
area to construct realistic LR-HR pairs. For instance, [30] used Sentinel-
2 and Planet images of the same region for supervised training. How-
ever, this approach requires strict spatial–temporal consistency, which
is challenging for alignment. Hence, an unsupervised learning strategy
is introduced to ease the reliance on real-world datasets. [69] designed
a recurrent CNN network to learn the downsampling and upsampling
process cyclically. [70] also proposed to learn two subnetworks named
degenerator and generator. With the help of these components, they
can implement supervised learning by converting the optimization
problem between LR and latent HR to minimize the loss function
between degraded LR and the original LR. This idea has been similarly
applied to hyperspectral images [71]. Although these methods partly
save us from building real-world datasets through unsupervised learn-
ing, they still have two drawbacks. First, downsampling the LR images
may cause further loss of structural details that are already lacking
in remote sensing imagery. Second, degradations in LR images can be
amplified by the degenerator. Recently, [31] developed a network to
learn the implicit kernel code from original LR images and transform
the code into LR features by kernel-aware layer. Unfortunately, they
still cannot escape from the monotonous datasets because they need
real blur kernels to enrich their degradation kernel pool. Moreover,
the kernel code prediction is fully supervised. To alleviate the reliance
on labeled remote sensing data, [72] designed an unsupervised multi-
layer model for multi-degradation learning. [73] proposed a novel
self-fusion strategy to map low-frequency remote sensing images to the
high-frequency domain. However, unsupervised training in large-scale
remote sensing images is easy to collapse.

To mitigate the aforementioned problems, we developed a degrada-
tion label-free network with self-supervised training. Furthermore, we
can achieve effective feature adaption through the proposed dual-wise
feature modulation network.

3. Methodology

3.1. Degradation formulation

Mathematically, classical super-resolution assumes that a high-
resolution (HR) image 𝑌 is degraded by a single degradation factor by
the following:

𝑋 = 𝐷𝑠 (𝑌 ) , (1)

where 𝐷𝑠 is a downsampler with a scale factor 𝑠, and 𝑋 is the low-
resolution (LR) image degraded from 𝑌 . By setting 𝐷𝑠 to a specific
perator, e.g., bicubic downsampling, an external dataset with paired
R-HR images can be established. In blind SR, the degradation process
an be expanded to:

= 𝐷𝑠 (𝑌 ⊗ 𝐵) +𝑁, (2)

here 𝐵 ∈ R2 represents a 2D blur kernel, ⊗ denotes convolution
peration, and 𝑁 is a noise trem. In this paper, we follow the setting
n previous work [53]. That is, 𝐷𝑠 is bicubic downsampling, 𝐵 is set to
aussian blur kernels, and 𝑁 represents Gaussian noise.

.2. The proposed approach

.2.1. Overall
As illustrated in Fig. 3, our method consists of three major com-

onents. An encoder 𝐸 (⋅) for degradation representation generation,
Dual-wise feature Modulation Network 𝐷𝑀𝑁 (⋅) for representation-

ware feature adaption, and an upsampler for reconstruction.
𝐸 (⋅) is trained to express degradation representations in a self-

upervised manner. For an LR input 𝑋 ∈ Rℎ×𝑤×𝑐 , the robust represen-
ation 𝑅 can be denoted as:
= 𝐸 (𝑋) . (3)
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After feature extraction, we get an LR feature 𝐹 of size ℎ × 𝑤 × 64
rom 𝑋. Then, 𝐹 and 𝑅 are both sent into 𝐷𝑀𝑁 (⋅). Influenced by
, 𝐹 is further modulated to the target HR feature domain. The final
odulated feature 𝐹 will be established by global residual connection,

hat is:

̃ = 𝐷𝑀𝑁 (𝐹 ,𝑅) + 𝐹 . (4)

Eventually, we adopt the pixelshuffle operation [74] to construct
he final super-resolved image 𝑋𝑆𝑅 ∈ Rℎ𝑟×𝑤𝑟×𝑐 , which can be formu-
ated as:
𝑆𝑅 = 𝑈𝑝

(

𝐹
)

, (5)

here 𝑟 is the upscale factor, 𝑐 = 3 represents RGB channels, and 𝑈𝑝 (⋅)
eans the upsampler. Here 𝑋𝑆𝑅 should be as close as possible to the

round-truth image 𝑌 .
In the following, we will describe how to predict degradation rep-

esentations with self-supervised training and the details of dual-wise
eature modulation.

Algorithm 1: Self-supervised Degradation Representation Learn-
ing Algorithm.

Input: 𝑁 LR images
{

𝑋𝑛
}𝑁
𝑛=1 in a mini-batch.

1 Initialization: 𝑁 = 8, 𝐸 (⋅) is Encoder, 𝑙(1) and 𝑙(2) are two fully
connected layers, 𝜎 (⋅) is ReLU activation.

2 foreach
{

𝑥1𝑛, 𝑥
2
𝑛
}

sampled from 𝑋𝑛 do
3 �̃�1𝑛 = 𝑓

(

𝑥1𝑛
)

, �̃�2𝑛 = 𝑓
(

𝑥2𝑛
)

; // Augmentation
4 ℎ1𝑛 = 𝐸

(

𝑥1𝑛
)

, ℎ2𝑛 = 𝐸
(

𝑥2𝑛
)

; // Representaions
5 𝑧1𝑛 = 𝑃

(

ℎ1𝑛
)

, 𝑧2𝑛 = 𝑃
(

ℎ2𝑛
)

; // Embeddings
6 end
7 Define

{

𝑧𝑘
}2𝑁
𝑘=1 =

{

𝑧11, 𝑧
2
1,⋯ , 𝑧1𝑛, 𝑧

2
𝑛
}𝑁
𝑛=1;

8 forall the 𝑖 ∈ {1,⋯ , 2𝑁} and 𝑗 ∈ {1,⋯ , 2𝑁} do
9 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗 = 𝑧⊤𝑖 𝑧𝑗

/(

‖

‖

𝑧𝑖‖‖ ⋅
‖

‖

‖

𝑧𝑗
‖

‖

‖

)

; // Similarity
10 end

11 Define 𝓁𝑖,𝑗 = − log exp
(

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗∕𝜏
)

∑2𝑁
𝑘=1 1[𝑘≠𝑖] exp(𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑘∕𝜏)

;

12 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 =
1
2𝑁

∑2𝑁
𝑘=1

[

𝓁2𝑘−1,2𝑘 + 𝓁2𝑘,2𝑘−1
]

; // Encoder Loss
13 Update 𝐸 (⋅) and 𝑃 (⋅) to minimize 𝑒𝑛𝑐𝑜𝑑𝑒𝑟.
14 Return 𝐸 (⋅) and throw away 𝑃 (⋅).

3.2.2. Degradation representation
Multi-view Sample Augmentation. As shown in Fig. 2, given an

LR input 𝑋𝑛 from 𝑁 images
{

𝑋𝑛
}𝑁
𝑛=1 in a minibatch, we firstly extract

wo random samples
{

𝑥1𝑛, 𝑥
2
𝑛
}

from it. Under the assumption that any
atch in an image suffers the same degradation, 𝑥1𝑛 and 𝑥2𝑛 should carry
imilar representations. Inspired by SimCLR [75], sample augmentation
(⋅) is performed in each sample to generate multi-views

{

�̃�1𝑛, �̃�
2
𝑛
}

.
ecause multiple data augmentation is crucial in yielding effective
epresentations. Unlike SimCLR, which aims at image classification, our
oal is to generate a discriminative representation of degradations in
. Therefore, 𝑓 (⋅) is not allowed to destroy the spatial integrity of
𝑥1𝑛, 𝑥

2
𝑛
}

. Here we adopt a simple but effective augmentation by random
otating (90◦, 180◦, and 270◦) and flipping (horizontally or vertically)
ach sample. Taking 𝑥1𝑛 as an example, we will get an augmentation �̃�1𝑛
y the following:

�̃�1𝑛 = 𝑓
(

𝑥1𝑛
)

(6)

Encoder. Two correlated views
{

�̃�1𝑛, �̃�
2
𝑛
}

are fed into an encoder to
btain two similar representations

{

ℎ1𝑛, ℎ
2
𝑛
}

. Note that the two encoders
n Fig. 2 are parameter sharing. The encoder 𝐸 (⋅) is a flexible compo-
ent for generating degradation representations, which can be easily
eplaced by any state-of-the-art blocks. In this paper, we employed
lightweight design because we can comfortably express discrimina-

ive representation benefits from our self-supervised learning strategy.
300

f

pecifically, 𝐸 (⋅) is designed to a shallow ResNet with one average
ooling tail and six convolution layers followed by batch normalization
BN) and ReLU activation. The input channels of these convolution lay-
rs are 𝑐 = 3, 64, 64, 128, 128, and 256. The degradation representation
1
𝑛 ∈ R1×1×256 is obtained by:

1
𝑛 = 𝐸

(

𝑥1𝑛
)

(7)

Projection Head. After that, we need to further project these
epresentations into embedding space to compute the contrastive loss.
ollowing SimCLR, a lightweight MLP layer is employed for projection
(⋅). That is:
1
𝑛 = 𝑝

(

ℎ1𝑛
)

= 𝑙(1)𝜎
(

𝑙(2)ℎ1𝑛
)

, (8)

where 𝑙(1) and 𝑙(2) are two fully connected layers, 𝜎 (⋅) is a ReLU
activation used to introduce nonlinearity.

So far, we have gained two positive embeddings
{

𝑧1𝑛, 𝑧
2
𝑛
}

which
ncorporate the same degradations. Different from previous work [32],
hich constructs a huge memory bank to save negative embeddings,
e simply treat the remaining 𝑁 −1 images in a mini-batch that suffer
ifferent degradation from 𝑋 as negative images. After the same degra-
ation representation procedure mentioned above, we can get 2 (𝑁 − 1)
egative embeddings 𝑧𝑘 (𝑘 = 1,… , 2 (𝑁 − 1)). Next, the encoder will be
rained to nicely distinguish a degradation from others with the help of
ontrastive learning.
Contrastive Learning. Self-supervision is carried by a contrastive

oss function. It works by maximizing the similarity of positive pairs
nd distinguishing the negative embeddings away from positives in
he embedding space. Before that, we need a penalty to measure the
imilarity between embeddings. For instance, the penalty between 𝑧𝑖
nd 𝑧𝑗 , namely 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗 , is determined by cosine similarity:

𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗 = 𝑧⊤𝑖 𝑧𝑗∕
(

‖

‖

𝑧𝑖‖‖ ⋅
‖

‖

‖

𝑧𝑗
‖

‖

‖

)

. (9)

As shown in Fig. 2, if we set 𝑧𝑖 as a positive anchor, the contrastive
oss 𝓁𝑖,𝑗 encourages pulling positive embedding 𝑧𝑗 to 𝑧𝑖 and pushing
egative 𝑧𝑘 away from 𝑧𝑖 in the embedding space. Following SimCLR,
he normalized temperature-scaled cross entropy (NT-Xent) loss is used
o identify 𝑧𝑗 from

{

𝑧𝑘
}

𝑘≠𝑖 for a given 𝑧𝑖, which can be formulated by:

𝑖,𝑗 = − log
exp

(

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗∕𝜏
)

∑2𝑁
𝑘=1 1[𝑘≠𝑖] exp

(

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑘∕𝜏
)

, (10)

where 1[𝑘≠𝑖] means a flag evaluating to 1 if 𝑘 ≠ 𝑖 and 0 if 𝑘 = 𝑖.
Here 𝜏 is a temperature hyper-parameter. For any positive pairs, we
treat the remaining 2 (𝑁 − 1) embeddings in the same minibatch as
negatives. In the training process, we define all the 2𝑁 embedding as
{

𝑧𝑘
}2𝑁
𝑘=1 =

{

𝑧11, 𝑧
2
1,… , 𝑧1𝑛, 𝑧

2
𝑛
}𝑁
𝑛=1. For image 𝑋𝑘, we calculate 𝓁2𝑘−1,2𝑘

and the reverse one 𝓁2𝑘,2𝑘−1. Finally, the total loss ℒ𝑒𝑛𝑐𝑜𝑑𝑒𝑟 for training
encoder is written as:

𝑒𝑛𝑐𝑜𝑑𝑒𝑟 =
1
2𝑁

2𝑁
∑

𝑘=1

[

𝓁2𝑘−1,2𝑘 + 𝓁2𝑘,2𝑘−1
]

. (11)

In the training process, we update the parameters of the encoder and
rojection head and throw away the projection head in the test phase.
he self-supervised degradation representation learning algorithm is
ummarized in Algorithm. 1.

.2.3. Dual-wise feature modulation network
In this part, we need to perform adaptive super-resolution recon-

truction with the guide of multiple degradation representations. As
resented in Fig. 3, the architecture of a dual-wise modulation network
DMN) is straightforward. The basic component of DMN is the dual-
ise modulation block (DMB). See Fig. 4 for more details. DMB can

ransform the robust degradation representations into the network from
oth feature and channel dimensions to achieve representation-aware
eature adaption.
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Fig. 2. The flowchart of our proposed self-supervised degradation representation approach. Given 𝑁 images in a minibatch, the embeddings extracted from the same image are
defined as positive pairs but the negatives from the different images. We introduce contrast learning to pull the positive embeddings closer in the feature space and push the
negative embeddings away. Thus, the intrinsic degradation information is adaptively mapped for accurate blind SR reconstruction.
Fig. 3. The overall structure of our network. The encoder is trained by the self-supervised strategy in Fig. 2 to encode degradation representations 𝑅. Then 𝑅 and low-resolution
features 𝐹 are sent to a dual-wise modulation network for feature adaption. The final upsampler is performed by pixel shuffle operation.
Fig. 4. The details of our dual-wise modulation block.
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Feature-wise Modulation. First, the representation ℎ𝑖 ∈ R1×1×256

should be reshaped into the same height and width with LR feature
𝐹 ∈ 𝑅ℎ×𝑤×64 to realize adaption in the feature dimension. Essentially,
the degradation representation 𝑅 is devoted in expressing degradations,
and it may not be spatially informative. Thus, we must compress the
representation along the channel dimension to avoid over-influence on
the LR feature. In detail, we first reduce the channel number of 𝑅 to
10 by passing 𝑅 through a fully connected layer, followed by ReLU
activation and another fully connected layer. Subsequently, we adopt
the dimensionality stretching [53] termed as 𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 (⋅) to reshape
𝑅 to the size of ℎ×𝑤×10. Through the concatenation, the degradation
representations can be integrated shallowly into 𝐹 , then we set a
convolution block to deeply propagate 𝑅 into 𝐹 . This shallow to deep
modulation allows comprehensive adaptation at the feature level. In
short, our feature-wise modulation can be formulated as follows:

𝑅𝑓 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑅) , (12)

𝐹 𝑓 = 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘
([

𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔
(

𝑅𝑓 ) , 𝐹
])

, (13)
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where 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (⋅) aims at reducing the channel numbers and [⋅] means
oncatenation operation. 𝑅𝑓 is the compressed representation and 𝐹 𝑓

epresents the modulated features in the feature dimension.
Channel-wise Modulation. To make degradation representations

ransformation adaptively in channel-wise, we also need to unify the
hannel dimensionality of LR feature 𝐹 and 𝑅. At first, we compress

to 64 channels by two fully connected (FC) layers. The internal
hannel number of these two FC layers are set to 256 and 64. Next,
e employ the widely used channel attention mechanism for feature
daption. In particular, the compressed representation 𝑅𝑐 is activated
y sigmoid function. After that, modulation in the feature dimension
an be achieved by multiplying the attention map into LR features 𝐹 .
𝑐 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑅) , (14)
𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑅𝑐 )⊗ 𝐹, (15)

here ⊗ denotes the channel-wise multiplication, and 𝐹 𝑐 represents
he modulated features in the channel dimension.

Note that the output of each DMG will be sent as input for the next
MG with a local residual connection. After the dual-wise modulation
etwork, we set a global residual connection to stabilize the gradient
ptimization. The LR feature 𝐹 is adaptively modulated to the target
omain 𝐹 , which is ready for the reconstruction of the desired HR
mage. In the final upsampler layer, we conduct two ×2 pixel shuffle
pscale operations to reconstruct the super-resolved image 𝑋𝑆𝑅, that
s:
𝑆𝑅 = 𝑈𝑝

(

𝐹
)

. (16)

. Experiment

.1. Dataset setting

Firstly, three remote sensing datasets involved in this paper are
ntroduced in detail. Next, we present the degradation setting used for
ynthesizing LR images.
(1) AID Dataset. AID (Aerial Image Dataset) [76] is a widely used

enchmark dataset for aerial scene classification, which can provide
ver 10,000 images with fixed 600 × 600 pixels of 30 scene classifica-
ions. Here, we utilize AID for training and testing. Specifically, 5000
mages were randomly picked from AID to build the training set. In the
emaining part, we further selected ten random images in each scene
lassification for testing. Finally, the test set contains a total of 300
mages, and we denoted it as AID-T.
(2) DOTA Dataset. DOTA (Dataset of Object deTection in Aerial

mages) [77] is a large-scale benchmark for object detection in aerial
mages. In DOTA, 11268 aerial images of 18 object categories are
vailable, and the image size varies from 800 × 800 to 20000 × 20000.
he authors collected these images from various sensors, including
oogle Earth, the Gaofen-2 Satellite, Jilin-1 Satellite, and airborne
latforms. We only use DOTA for testing and do not involve it in
he training process to validate the generalization of our model on
iverse datasets. To save memory cost, we simply choose images below
000 × 2000 pixels to build the test set (DOTA-T). After a random
election, we ended up with 250 images for testing.
(3) Video Satellite Imagery Dataset. The third dataset was derived

rom Jilin-1 satellite videos. Different from AID-T and DOTA-T, which
ere collected from static images, satellite video has a higher temporal

esolution for dynamic observations. Also, Jilin-T was only established
or testing. In detail, ten source videos with a frame size of 4096 × 2160
ere cropped to 200 video clips with a size of 640 × 640. In each

lip, we randomly sampled one frame from 100 consecutive frames for
esting. Hence, we can build a test set (Jilin-T) that covers 200 video
atellite images. For more details about the satellite video data source,
lease refer to our previous work [67].
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Some typical samples in the aforementioned three datasets can be
ound in Fig. 6. Thanks to the extensive sensor types and remote sensing
cenes in these datasets, we can comprehensively validate our model.
Degradation Setting. Following previous work [32], we degrade

he original images to construct LR-HR training pairs. In Eq. (2), the size
f the Gaussian blur kernel is fixed to 21 × 21. We first build LR images
ith noise-free and isotropic Gaussian blur, and the kernel width 𝜎 is

andomly chosen from [0.2, 4]. Then we develop a more general case
y degrading images with noise injection and anisotropic Gaussian
lur kernel. Here the width of the anisotropic Gaussian blur kernel is
etermined by a Gaussian probability density function, which follows a
ormal distribution 𝑁

(

0,
∑
)

. ∑ is covariance and it is determined by
wo random eigenvalues 𝜆1, 𝜆2 ∼ 𝑈 (0.2, 4) and a random rotation angle
∼ 𝑈 (0, 𝜋). The noise level ranges from [0, 25].

.2. Implementation details

In this paper, we only implement 4×super-resolution, i.e., 𝑟 = 4.
he number of dual-wise modulation groups (DMG) and dual-wise
odulation blocks (DMB) is set to 5 in the final model. The temperature
arameter 𝜏 in Eq. (10) is 0.1. More details about the network design
re discussed in the ablation study section. During model training,
he minibatch is set to 8. Benefiting from our multi-view sample
ugmentation strategy, our model does not require a large batchsize
o cover lavish negative images. In each batch, we randomly crop and
otate 8 HR images and then degrade them by eight random Gaussian
lurs and noises. To stable the training process, we adopt a two-stage
raining strategy. First, we only update the parameters of the encoder
nd projection head, where the learning rate is 1 × 10−3 and decays by
factor of 10 at half of the total 100 epochs. In the next stage, we

rain the entire network for 600 epochs with an initial learning rate of
× 10−4, and it decays to 1/2 of the previous one at every 100 epochs.
dam Optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999 is used for optimization.
he 1 function is used to measure the pixel-level difference between
he super-resolved image 𝑋𝑆𝑅 and the ground-truth 𝑌 by the following:

𝑆𝑅 = ‖

‖

‖

𝑌 −𝑋𝑆𝑅‖
‖

‖1
, (17)

inally, the overall loss  can be written as:

= 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑆𝑅. (18)

e conducted all the experiments on a single NVIDIA RTX 2080Ti GPU.
t takes nearly 48 h to train our model.

.3. Experiments on noise-free and isotropic blur

First, let us consider a simple case where an image is only blurred
y an isotropic kernel. We carefully evaluate our method on three test
ets and compare it with various models, including Bicubic, HAN [43],
CT [78], ZSSR [58], IKC [53], AdaTarget [79], and CMDSR [33].
AN is a state-of-the-art non-blind super-resolution method designed

or bicubic degradation. Here we retrained HAN on our synthesized
R-HR training pairs with multiple degradations for a fair comparison.
CT is a powerful transformer-based image restoration model. We com-
are our CNN-based model with ACT to demonstrate our superiority.
SSR is an unsupervised method based on zero-shot learning, which
an tackle isotropic and anisotropic blurs. IKC requires explicit blur
ernel estimation, but it is only designed for isotropic blur degrada-
ion. AdaTarget is an adaptive method without explicit blur kernel
stimation, and it can handle both isotropic and anisotropic blurs.
MDSR also employs a modulation idea. By comparing with CMDSR,
e can prove the effectiveness of our dual-wise modulation. All these
ethods are retrained in our training set following the official settings.

n quantitative results, we use peak signal-to-noise ratio (PSNR) and
tructural similarity (SSIM) for evaluation. For qualitative comparison,
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Fig. 5. Visual comparisons of experiments on noise-free and isotropic Gaussian blur. All these restored images are selected from AID-T. The best PSNR/SSIM is shown in bold
below the image, and the second place is marked by underline.
we zoom and display the visual details to validate the fidelity of the
reconstruction images.

Quantitative results. Table 1 summarizes the PSNR/SSIM perfor-
mance of each method on AID-T, and we further categorize the results
by 30 scene classifications. Our method achieves the best metrics in
all scenes, which demonstrates our considerable performance can be
well-generalized to various remote sensing scenes. In the ‘‘playground’’
category, we can surpass the second place IKC by a significant im-
provement of 0.45 dB. Furthermore, we find that the non-blind method
HAN can lead to ZSSR and CMDSR. On the one hand, this illustrates
that deblur can be parameterized in CNN to some extent. On the other
hand, it indicates the purely unsupervised method ZSSR, which relies
on internal statistics, is struggling to handle complex degradations. As
the authors stated in their paper [58], ZSSR can only maintain its sta-
bility in limited cases. CMDSR put forward a multi-task meta-learning
strategy to predict conditional features. However, this complicated
multi-task learning may not precisely express the degradation. Thanks
to our straightforward contrastive learning, we can comfortably gen-
erate discriminative representations for feature adaption. The blind
methods ACT and AdaTarget produce closing performance, which sug-
gests the favorable deblur potential of the transformer-based method.
Besides, it reflects the performance bottleneck of AdaTarget caused by
missing degradation estimation. With the help of kernel estimation,
IKC ranks second. Unlike IKC, our method throws away the explicit
blur kernel estimation and only predicts an abstract representation,
which alleviates the performance drop caused by kernel mismatch. In
conclusion, our method can achieve the best performance benefit from
robust and accurate degradation representation.

Table 2 gives the average PSNR/SSIM results of each model on
DOTA-T and Jilin-T. In Fig. 8, we display the reconstruction perfor-
mance of the model with different blur kernel widths (0.2, 1.0, 1.8,
1.6, 3.4). It can be seen that our method exceeds all the comparison
methods in all widths of blur kernels. It is worth noting that we only
train each model on AID and directly test them on DOTA-T and Jilin-T,
which reveals the good generalizability of our method across different
datasets.
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Fig. 6. Some typical samples of (a) AID, (b) DOTA-T, and (c) Jilin-T. AID has 30 scene
classifications, DOTA-T is collected from multiple sensors, and Jilin-T is derived from
satellite video.

Qualitative results. In Fig. 5, we exhibit the reconstruction results
of three scenes in AID-T. For better comparison, the PSNR/SSIM metrics
are also listed under each image. In image ‘‘center_110’’, Bicubic and
ZSSR can barely recover fine-grained details, and the non-blind method
HAN produces distinct blurring. In the green box, unfortunately, none
of the methods can restore the complete lines. Besides, AdaTarget
creates unpleasing distortions. As mentioned before, methods without
degenerate estimation are not yet robust enough. IKC and ACT are
slightly satisfactory compared to the other methods. However, the
texture is still not very clear and blurred. It is straightforward to find
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Fig. 7. Visual comparisons of experiments on noise-free and isotropic Gaussian blur. These restored images are selected from DOTA-T and Jilin-T. The best PSNR/SSIM is shown
in bold below the image, and the second place is marked by underline.
Table 1
The PSNR/SSIM results of experiments on noise-free and isotropic Gaussian blur. We test these models on AID-T with five kernel widths 𝜎 = 0.2, 1.0, 1.8, 2.6, and 3.4. The results
are then divided into 30 classes according to scene categories. The best result is shown in blod, and the second place is marked by underline.

Land cover Bicubic HAN ACT ZSSR IKC AdaTarget CMDSR Ours

Airport 27.16/0.7173 29.82/0.8109 29.90/0.8162 27.79/0.7415 30.20/0.8223 29.88/0.8167 28.76/0.7876 30.30/0.8249
Bare land 29.97/0.6684 31.72/0.7296 31.39/0.7320 30.47/0.6917 31.87/0.7380 31.79/0.7380 30.77/0.7202 32.23/0.7452
Baseball field 27.88/0.7286 30.56/0.8167 30.73/0.8247 28.48/0.7508 30.95/0.8268 30.75/0.8250 29.47/0.7934 31.09/0.8308
Beach 32.36/0.8390 34.69/0.8778 34.29/0.8807 32.88/0.8501 34.47/0.8810 34.49/0.8804 31.97/0.8663 35.14/0.8859
Bridge 28.44/0.7836 31.31/0.8523 31.58/0.8575 29.02/0.7998 31.43/0.8608 31.25/0.8559 29.75/0.8322 32.01/0.8640
Center 25.53/0.6382 28.21/0.7635 28.57/0.7804 26.18/0.6718 28.08/0.7737 28.26/0.7777 26.68/0.7207 29.27/0.7929
Church 22.69/0.5478 25.08/0.6821 25.42/0.7045 23.32/0.5840 25.50/0.7012 25.32/0.7012 24.04/0.6310 25.65/0.7146
Commercial 24.96/0.6561 27.79/0.7901 27.96/0.7966 25.64/0.6903 28.13/0.8000 27.80/0.7955 26.69/0.7592 28.22/0.8039
D-Residential 21.90/0.4761 23.95/0.6370 24.14/0.6493 22.36/0.5135 24.33/0.6546 24.06/0.6508 23.23/0.5905 24.35/0.6609
Desert 38.09/0.9075 39.09/0.9209 36.96/0.9223 37.97/0.9095 39.36/0.9225 39.36/0.9226 38.76/0.9176 39.81/0.9242
Farmland 31.22/0.7898 33.99/0.8552 34.24/0.8621 31.78/0.8062 34.67/0.8674 34.08/0.8603 32.85/0.8403 34.68/0.8687
Forest 26.71/0.5252 28.27/0.6380 28.40/0.6475 27.17/0.5650 28.47/0.6495 28.39/0.6548 27.86/0.6203 28.58/0.6646
Industrial 24.92/0.6045 27.50/0.7334 27.67/0.7429 25.54/0.6369 27.90/0.7527 27.58/0.7447 26.44/0.7051 28.03/0.7561
Meadow 34.94/0.8035 36.40/0.8306 35.96/0.8333 35.21/0.8135 35.97/0.8342 36.30/0.8342 35.36/0.8249 36.82/0.8385
M-Residential 26.13/0.5978 28.30/0.7096 28.58/0.7246 26.61/0.6259 28.22/0.7213 28.26/0.7215 26.90/0.6693 29.15/0.7348
Mountain 29.05/0.6821 31.12/0.7708 31.06/0.7731 29.60/0.7103 31.25/0.7756 31.07/0.7748 30.23/0.7563 31.36/0.7808
Park 26.40/0.6179 28.63/0.7297 28.69/0.7341 26.95/0.6497 28.89/0.7408 28.66/0.7368 27.83/0.7099 28.93/0.7433
Parking 22.33/0.6421 26.26/0.8005 26.84/0.8187 23.07/0.6750 27.01/0.8188 26.56/0.8132 24.63/0.7461 27.31/0.8306
Playground 28.42/0.7929 32.37/0.8860 32.47/0.8909 29.35/0.8166 32.71/0.8958 32.45/0.8909 30.36/0.8576 33.26/0.9005
Pond 27.82/0.7279 29.55/0.7883 29.64/0.7936 28.19/0.7433 29.87/0.7996 29.64/0.7963 28.82/0.7742 29.95/0.8023
Port 27.01/0.7904 29.93/0.8675 30.20/0.8736 27.65/0.8091 30.21/0.8762 29.98/0.8737 28.46/0.8467 30.51/0.8810
Railway station 25.87/0.6242 28.74/0.7619 28.86/0.7671 26.66/0.6645 29.04/0.7741 28.79/0.7699 27.48/0.7276 29.20/0.7828
Resort 25.78/0.6697 28.62/0.7752 28.82/0.7828 26.41/0.6953 28.87/0.7842 28.59/0.7810 27.00/0.7426 29.18/0.7918
River 29.12/0.6780 30.86/0.7570 30.87/0.7625 29.53/0.7014 31.07/0.7664 30.86/0.7651 30.23/0.7447 31.16/0.7703
School 25.77/0.6526 28.67/0.7835 28.96/0.7913 26.40/0.6827 28.79/0.7963 28.62/0.7888 27.29/0.7487 29.26/0.8002
S-Residential 25.39/0.4721 26.63/0.5743 26.76/0.5873 25.73/0.5064 26.83/0.5909 26.74/0.5912 26.24/0.5494 26.85/0.5977
Square 24.86/0.6481 27.81/0.7723 28.23/0.7857 25.53/0.6781 27.99/0.7858 27.94/0.7833 26.29/0.7361 28.65/0.7965
Stadium 24.89/0.6703 27.65/0.7826 27.84/0.7918 25.48/0.6947 28.06/0.7988 27.71/0.7908 26.52/0.7505 28.15/0.8012
Storage tanks 24.62/0.6262 26.76/0.7305 26.92/0.7391 25.13/0.6519 27.07/0.7415 26.89/0.7416 25.95/0.7029 27.14/0.7492
Viaduct 26.06/0.6286 28.73/0.7582 28.83/0.7636 26.60/0.6599 29.17/0.7752 28.77/0.7656 27.63/0.7250 29.24/0.7792

Overall 27.21/0.6736 29.63/0.7729 29.69/0.7810 27.76/0.6996 29.88/0.7842 29.70/0.7814 28.48/0.7466 30.18/0.7906
that our method not only recovers the maximum number of lines
but also successfully removes the blur and yields sharper edges. In
the red box, only our method can restore complete details closest to
the ground truth. Image ‘‘port_238’’ contains a dense distribution of
multi-scale ships. Our method can better distinguish the ships, while
the other models produce blending drawbacks between multi-scale
objects. In image ‘‘parking_272’’, paying attention to the distribution
of markings on the ground and the boundary of the cars, our method
yields the sharpest edge distribution with minor distortion. This proves
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that our representations can characterize precise degradations even in
multi-scale objects.

Fig. 7 exhibits the visual comparison of the DOTA-T and Jilin-T.
In the yellow box of an image in DOTA-T, CMDSR almost lost all
the markings on the ground. ACT and IKC give some pleasing results,
but still suffer from severe artifacts and cannot restore all the details.
In the basketball court below, IKC has a dramatic performance drop.
Because when real distribution deviates from the estimated kernel, the
kernel misestimation may provide interference, which badly damages
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Table 2
The average PSNR/SSIM and model efficiency results of experiments on noise-free and isotropic Gaussian blur. We test these models on AID-T,
DOTA-T, and Jilin-T with five kernel widths 𝜎 = 0.2, 1.0, 1.8, 2.6, and 3.4. The PSNR/SSIM results under each kernel width are then averaged.
The best result is shown in blod, and the second place is marked by underline. FLOPs of different models are calculated on an LR image of
size 150 × 150. The test time is the total time to complete the test on three test sets.
Method Parameter FLOPs Test time (s) AID-T DOTA-T JiLin-T

Bicubic – – – 27.21/0.6736 24.80/0.6432 29.61/0.8468
HAN 64.19 M 1475.06 G 242.46 29.50/0.7720 28.65/0.7803 32.23/0.9215

ACT 46.18 M 230.84 G 51.53 29.69/0.7810 29.06/0.7942 33.26/0.9328
IKC 9.45 M 130.58 G 85.30 29.88/0.7842 29.17/0.7970 33.11/0.9334
AdaTarget 16.70 M 403.38 G 196.03 29.70/0.7814 28.91/0.7914 31.80/0.9155
CMDSR 1.50 M 2.86 G 31.47 28.48/0.7466 27.52/0.7426 31.20/0.9047
Ours 5.74 M 115.23 G 48.43 30.18/0.7906 29.36/0.8033 33.34/0.9350
Table 3
The PSNR/SSIM results of experiments on noises and anisotropic Gaussian blur. We test these models on AID-T with 11 typical kernel widths and noise levels from 0 to 10. The
best result is shown in blod, and the second place is marked by underline.

Model Noise Anisotropic gaussian blur kernels Average

Bicubic

0

27.67 27.56 26.93 26.27 26.09 26.81 27.02 26.20 26.62 26.08 25.83 26.64
ACT 29.54 29.46 29.17 28.35 28.53 29.12 29.28 28.74 28.78 28.55 28.49 28.91
IKC 29.33 29.85 29.09 27.43 26.90 27.18 29.05 27.73 27.62 27.98 29.18 28.30
AdaTarget 29.32 29.46 29.10 28.59 28.54 28.69 29.02 28.55 28.67 28.40 28.12 28.77
DASR 29.50 29.52 29.31 28.89 28.71 29.22 29.34 28.79 28.97 28.66 28.68 29.05
CMDSR 28.76 28.90 28.60 27.55 27.78 28.19 28.55 27.72 27.65 27.91 28.29 28.17
Ours 30.01 30.01 29.86 29.39 29.23 29.76 29.87 29.41 29.56 29.22 29.14 29.59

Bicubic

5

27.26 27.16 26.59 25.98 25.80 26.48 26.66 25.91 26.30 25.80 25.56 26.32
ACT 28.59 28.49 28.00 27.31 27.23 27.93 28.12 27.40 27.73 27.27 27.08 27.74
IKC 27.85 27.76 26.87 26.03 25.77 26.67 26.96 25.92 26.45 25.76 25.45 26.50
AdaTarget 28.27 28.26 27.59 26.87 26.69 27.41 27.66 26.86 27.33 26.65 26.28 27.26
DASR 28.60 28.53 28.05 27.46 27.23 27.90 28.07 27.24 27.67 27.14 26.99 27.72
CMDSR 28.14 28.15 27.74 27.01 26.97 27.50 27.75 27.05 27.20 27.01 26.94 27.41
Ours 28.90 28.83 28.35 27.73 27.51 28.19 28.40 27.65 28.08 27.50 27.29 28.04

Bicubic

10

26.43 26.34 25.86 25.33 25.18 25.76 25.92 25.27 25.61 25.17 24.97 25.62
ACT 27.80 27.70 27.21 26.64 26.55 27.16 27.32 26.67 26.98 26.57 26.40 27.00
IKC 26.20 26.11 25.51 24.92 24.73 25.38 25.58 24.83 25.24 24.72 24.49 25.25
AdaTarget 27.36 27.28 26.61 26.00 25.81 26.54 26.74 25.98 26.46 25.78 25.52 26.37
DASR 27.79 27.73 27.25 26.72 26.53 27.12 27.28 26.54 26.90 26.46 26.31 26.96
CMDSR 27.45 27.42 27.05 26.49 26.40 26.89 27.07 26.47 26.69 26.42 26.30 26.79
Ours 28.02 27.94 27.46 26.92 26.74 27.34 27.51 26.85 27.23 26.74 26.55 27.21
the fidelity. We can observe a similar issue in the Jilin-T images. The
reconstruction is easily distorted and blurred at the high-frequency
part, such as edges and boundaries. In this challenging case, our method
is visually satisfactory with sharper information and less blur (see
Table 5).

4.4. Experiments on noises and anisotropic blur

In this experiment, the degradation setting is more general. That
is, an image contains noise and anisotropic blur with Gaussian prob-
ability distribution. Now, it is challenging for the isotropic-oriented
method IKC to tackle this issue. Therefore, we additionally add a
model named DASR [32] for a fair comparison. DASR is designed for
isotropic/anisotropic blur and noise. Also, ACT, IKC, AdaTarget, DASR,
and CMDSR were retrained with the general degradation setting.

Qualitative Results. In Table 3, we visualize 11 representative
anisotropic blur kernels for evaluation. The noise level is set to 0, 5,
and 10. Even in noise-free conditions, IKC can no longer cope with
anisotropic blur and cannot be compared with ACT, AdaTarget, and
DASR. Our method can lead the second place DASR by 0.54 dB, which
proves our superiority under more complicated degradations. As noise
level increases, all methods have performance drop. At a noise of 5,
DASR and ACT have comparable performance. Different from the ex-
periment on isotropic blur, CMDSR has shown its strength in deblur and
denoising. CMDSR can surpass AdaTarget and IKC. Since degradation
has become more severe, we can still ahead of ACT by 0.3 dB at
the noise of 5 and 0.21 dB at the noise of 10. This demonstrates the
robustness of our representations under severe noise.
305
Table 4 shows a more comprehensive comparison of DOTA-T and
Jilin-T. AdaTarget and DASR achieved second place, respectively. Our
approach achieves the best results in all test sets, illustrating our good
generalization.

Quantitative Results. In the ‘‘parking_137’’ images shown in Fig. 9.
As the noise level increases, the reconstructed visual effects all de-
crease. Among them, IKC contains obvious noise due to the inherent
design that IKC can only handle blur. The restored car in CMDSR is
difficult to distinguish. ACT is slightly better, but the boundary is badly
mixed with the ground. AdaTarget and DASR are more sharpened than
ACT, but AdaTarget seems a little irregular in the shape of cars. Our
method is nicely immune to all types of noise and visually satisfying.
In the DOTA-T image of Fig. 10, our approach is undoubtedly the best
as well.

4.5. Experiments on real degradations

In the real-world experiment, we will directly super-resolve the
ground truth images to predict the latent high-resolution counterparts.
The degradation contained in the real image is unknown. Here we
adopt a reference-free indicator NIQE [80] to evaluate these methods
objectively. The smaller the NIQE, the more the image matches the
human eye perception. Thanks to our self-supervised degradation rep-
resentation mechanism, we can first learn the potential degradations on
real-world images without ground-truth degradation labels. In particu-
lar, we train our encoder in the synthesized dataset with anisotropic
blur and noise for the first 50 epochs. After that, we train the encoder
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Table 4
The average PSNR/SSIM results of experiments on noises and anisotropic Gaussian blur. We test these
models on DOTA-T and Jilin-T with 11 typical kernel widths and noise levels from 0 to 10. The results
under each degradation are then averaged. The best result is shown in blod, and the second place is marked
by underline.

Dataset Method Noise level Average

0 5 10

DOTA-T

ACT 27.65/0.7529 26.68/ 0.7026 26.02/0.6743 26.78/0.7099
IKC 27.27/0.7506 25.36/0.6271 24.34/0.5409 25.66/0.6395
AdaTarget 27.93/0.7638 26.69/0.7020 25.88/0.6647 26.84/0.7102
DASR 27.61/0.7515 26.58/0.6992 25.99/0.6735 26.73/0.7081
CMDSR 26.82/0.7227 26.20/0.6836 25.69/0.6598 26.24/0.6887
Ours 28.59/0.7784 27.23/0.7195 26.42/0.6881 27.41/0.7287

JILIN-T

ACT 31.82/0.9152 30.11/0.8660 29.48/0.8380 30.47/0.8730
IKC 30.23/0.8912 28.52/0.7895 26.75/0.6950 28.50/0.7919
AdaTarget 30.50/0.8938 28.79/0.8321 27.45/0.7878 28.91/0.8379
DASR 32.12/0.9235 30.81/0.8726 29.24/0.8354 30.72/0.8771
CMDSR 30.32/0.8832 29.58/0.8562 28.58/0.8272 29.49/0.8555
Ours 32.92/0.9250 30.74/0.8743 29.28/0.8401 30.98/0.8798
Fig. 8. The PSNR performance on AID-T (a), DOTA-T (b), and Jilin-T (c). The kernel
width 𝜎 is set from 0.2 to 3.4.

with real data for another 50 epochs to enhance real generalizability.
Note that we do not need real degradation labels to train our encoder.
And finally, we train the whole model with the synthesized training set
for 600 epochs. The visual results are shown in Fig. 11. We can see that
IKC produces much noisy artifacts since it can not implement denoising.
Our results are relatively cleaner and have less blur. NIQE metrics also
demonstrate we can generate objectively visual-pleasing results.
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Table 5
Ablation experiments on model designs. The PSNR is calculated on isotropic Gaussian
blur with kernel width of 3.4. The best PSNR is shown in blod and the second place
is marked by underline.

Method Contrastive
learning

Dual-wise
modulation

𝓁2 Norm PSNR/dB

Model-1 ✗ ✓ ✓ 25.76
Model-2 (Ours) ✓ ✓ ✓ 28.11
Model-3 (w SFT Layer) ✓ ✗ ✓ 27.92
Model-4 (w DAConv) ✓ ✗ ✓ 27.96
Model-5 ✓ ✓ ✗ Fail

4.6. Ablation study

In this section, we discuss the hyperparameters setting and the
effectiveness of the key components in our model. Note that all the
experiments are conducted on noise-free and isotropic Gaussian blur
degradation settings.

(1) The number of DMB and DMG. As shown in Fig. 13(e) and
(f), the reconstruction performance improves as the number of DMB
𝑁𝐷𝑀𝐵 increases but reaches its bottleneck at 𝑁𝐷𝑀𝐵 > 3. The same goes
for the number of DMG 𝑁𝐷𝑀𝐺, where there is a tiny improvement in
PNSR after 𝑁𝐷𝑀𝐺 > 3. To save computational costs while maintaining
the capability of CNN, we cascade five DMBs and DMGs in our final
model.

(2) The number of batchsize. Many studies have confirmed that an
adequate amount of negative samples is crucial for contrast learning. In
this paper, the negative images are located in a minibatch. In Fig. 13(b),
we find that the PSNR even decreases when the batchsize is larger
than 8. On the one hand, this demonstrates that our multi-view sample
augmentation strategy can enrich enough negative samples. On the
other hand, it illustrates that excessive negative samples may increase
the pressure of contrastive learning and thus reduce performance.

(3) Temperature hyper-parameter. Following the setting in Sim-
CLR [75], we discuss different temperature parameters (𝜏 =
0.05, 0.1, 0.5, 1) used in the contrastive loss. The PSNR results can be
found in Table 6. Our encoder can better express the degradations at
𝜏 = 0.1 and lead to the best performance.

(4) Self-supervised Degradation Representation. To explore the
effectiveness of our self-supervised degenerate representations, we set
up a model (Model-1) which throws away the contrastive learning
loss 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 during model training. In this case, the degradation rep-
resentations are adaptively learned by the encoder in an end-to-end
manner. The training process is shown in Fig. 13(a) and the quantitative
results are listed in Table 5. Without contrastive learning, Model-1
can hardly distinguish various degradations, thus dropping 2.37 dB in
PSNR compared with our final model (25.76 dB v.s. 28.11 dB). This
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Fig. 9. The visual comparison of experiments on noises and anisotropic Gaussian blur. This image ‘‘parking_137’’ is picked from AID-T. The best PSNR/SSIM is shown in bold
below the image, and the second place is marked by underline.
Fig. 10. The visual comparison of experiments on noises and anisotropic Gaussian blur. This image is picked from DOTA-T and suffers from anisotropic blur kernel of
[

𝜆1 , 𝜆2 , 𝜃
]

=
[

3.8, 1.8, 7
10
𝜋
]

and noise level of 5. The best PSNR/SSIM is shown in bold below the image, and the second place is marked by underline.
Fig. 11. The visual comparison of experiments on real degradations. The best NIQE is shown in bold, and the second place is marked by underline.
fully illustrates that our degradation representations can predict precise
degradation priors and synergetically help super-resolution procedures
adapt to various degradation distributions.
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In Fig. 12, we visualize the degraded representations in AID-T with
t-SNE [81] algorithm. In detail, we degraded AID-T with different
Gaussian blur kernels and noises. Then we encode them with our
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Table 6
Ablation experiments on hyperparameters. The PSNR is calculated on isotropic Gaussian blur with a kernel
width of 3.4. The best PSNR is shown in blod.
Mini-Batch PSNR Temperature (𝜏) PSNR 𝑁𝐷𝑀𝐵 PSNR 𝑁𝐷𝑀𝐺 PSNR

4 28.10 0.05 27.98 1 27.73 1 27.66
8 28.11 0.1 28.11 2 27.96 5 28.11
16 28.06 0.5 28.04 3 28.09 10 28.12
32 28.02 1 27.85 5 28.11 15 28.09
Fig. 12. The t-SNE visualization of representations for various degradations. (a)
illustrates representations generated from five isotropic Gaussian blur kernels without
degradation representation learning (Model-1). (b) illustrates representations generated
from five isotropic Gaussian blur kernels by our method (Model-2). (c) presents
representations generated from five anisotropic Gaussian blur kernels, and (d) displays
representations derived from four noises.

encoder to see whether we can distinguish various degradations in the
embedding space. The representations in (a) are mixed and indistin-
guishable, while our method (2) can cluster them well with contrast
learning. Furthermore, the visualization results on anisotropic blur
kernels and noises are also displayed in (3) and (4). With the guide of
discriminative representations, our dual-wise modulation network can
learn how to adapt to diverse degradation distributions, thus leading a
good generalization on real-world scenes with multiple degradations.

(5) 𝓁2 normalization of embeddings. The embeddings
{

𝑧𝑘
}2𝑁
𝑘=1

need to be normalized by 𝓁2 function. Otherwise, we will fail in model
training because of gradient explosion. Besides, we plot the correlation
matrices of five embeddings. They are derived from the same image
but contain five isotropic Gaussian kernels. In Fig. 14, there is a
low correlation between embeddings of different degradations, which
indicates we can properly identify different blurs in the embedding
space.

(6) Dual-wise Feature Modulation We compare the proposed
dual-wise modulation network (DMN) with two state-of-the-art feature
adaption approaches. Firstly, we replace our DMN with the spatial-
feature transformation layer (SFT Layer) network used in IKC. It can
integrate the blur kernel estimation into feature space by an affine
transformation. Secondly, we adopt the degradation-aware convolution
(DAConv) network proposed in DASR to realize feature adaption. Their
training processes are shown in Fig. 13(c). Our dual-wise modulation
network can gather higher PSNR by 0.15 dB than DAConv, which
demonstrates the proposed DMN is valid for feature adaption to the
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desired domain. In a word, we achieve a shallow-to-deep modulation
on feature dimension to mitigate the over-influence of LR features. And
the channel-wise modulation indeed helps us realize effective feature
adaption on the channel dimension.

(7) Model efficiency. In Table 2, we calculate the number of
parameters, the floating-point operations (FLOPs), and the test time
for each method. Here, the FLOPs is calculated with an LR input of
size 150 × 150. The test time is the total time taken to complete the
test on three test sets. Compared to the second-place IKC in AID-T,
the proposed model has a 39.3% reduction in the parameters (5.74M
v.s. 9.45M), a 15.35G drop in the FLOPs (115.23G v.s. 130.58G), but
outperforms it by 0.3 dB on average. Thanks to the equipment of
shallow ResNet and an efficient dual-wise modulation network, we
reach a favorable tradeoff between performance and efficiency.

5. Conclusion

In this paper, we investigate the blind SISR problem for real-
world remote sensing imagery with multiple degradations. Inspired by
self-supervised learning, we developed a degradation-guided adaptive
network to learn how to realize feature adaption to a target domain.
Specifically, we use a shallow ResNet to encode and project multi-
view samples into embedding space for contrastive learning. Thanks
to the robust representations derived from self-supervised learning, we
can receive a precise degradation estimation in a label-free manner to
collaboratively guide the downstream SR network. Besides, an effective
dual-wise modulation network was proposed to realize transformation
on feature and channel dimensions. Extensive experiments on three
mainstream remote sensing datasets demonstrate that our framework
can handle diverse degradation distributions with a single forward
propagation.

In future work, we will further establish a sophisticated degradation
learning approach to consider the specialties of remote sensing images,
such as degradation variations among multi-scale objects in remote
sensing images.
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Fig. 13. The training process of ablation experiments. (a) is about degenerate representational learning. (b) is about the number of batchsize. (c) is involved in different modulation
approaches. (d) is temperature parameter. (c) and (d) represent the number of DMG and DMB, respectively.
Fig. 14. The correlation map of embeddings under five isotropic Gaussian blur kernels.
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