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• A deep learning framework (DeepCAMS)
was developed to realize the spatiotempo-
ral downscaling of CAMS.

• A long-term (2003–2020) hourly 0.25°
global PM2.5 dataset was proposed.

• DeepCAMS can maintain the spatial con-
sistency and temporal continuity.
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Generating a long-term high-spatiotemporal resolution global PM2.5 dataset is of great significance for environmental
management to mitigate the air pollution concerns worldwide. However, the current long-term (2003–2020) global
reanalysis dataset Copernicus AtmosphereMonitoring Service (CAMS) reanalysis has drawbacks in fine-scale research
due to its coarse spatiotemporal resolution (0.75°, 3-h). Hence, this paper developed a deep learning-based framework
(DeepCAMS) to downscale CAMS PM2.5 product on the spatiotemporal dimension for resolution enhancement. The
nonlinear statistical downscaling from low-resolution (LR) to high-resolution (HR) data can be learned from the
high quality (0.25°, hourly) but short-term (2018–2020) Goddard Earth Observing System composition forecast
(GEOS-CF) system PM2.5 product. Compared to the conventional spatiotemporal interpolation methods, simulation
validations onGEOS-CF demonstrate that DeepCAMS is capable of producing accurate temporal variations with an im-
provement of Root-Mean-Squared Error (RMSE) of 0.84 (4.46 to 5.30) ug/m3 and spatial details with an improvement
of Mean Absolute Error (MAE) of 0.16 (0.34 to 0.50) ug/m3. The real validations on CAMS reflect convincing spatial
consistency and temporal continuity at both regional and global scales. Furthermore, the proposed dataset is validated
with OpenAQ air quality data from 2017 to 2019, and the in-situ validations illustrate that the DeepCAMS maintains
the consistent precision (R: 0.597) as the original CAMS (R: 0.593) while tripling the spatiotemporal resolution. The
proposed dataset will be available at https://doi.org/10.5281/zenodo.6381600.
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1. Introduction
Table 1
Summary of the PM2.5 data sources used in this paper.

Category Source data Years Temporal resolution Spatial resolution

Reanalysis data
CAMS 2003–2020 3-h 0.75° × 0.75°
GEOS-CF 2018–2020 hourly 0.25° × 0.25°

In-situ data OpenAQ 2017–2019 hourly point
Fine particulate matter with aerodynamic diameter below 2.5 um
(PM2.5) (Yang et al., 2021; Thind et al., 2022), as a significant pollutant
in the atmosphere, has become a global threat on human health
(Lelieveld et al., 2015; Li et al., 2021), ecology (Zhai et al., 2014;
Johnston et al., 2021), meteorology (Bae et al., 2021; Bai et al., 2022)
and economy (Kocak and Celik, 2022; Zhu et al., 2022). Nowadays, many
researchers and institutions are dedicated to the monitoring and prediction
of PM2.5 in hope of alleviating this global concern. To integrally study the
spatial distribution and temporal variation of PM2.5, the research commu-
nity urgently needs a global scale long-term high spatiotemporal resolution
dataset (Wang et al., 2021b, 2022c; Zhang et al., 2021a). Fortunately, the
widely used reanalysis data is born to meet such requirements.

Existing reanalysis datasets mainly integrate the accuracy of various
observations through sophisticated data assimilation and modeling
techniques that can preserve spatial consistency and temporal continuity.
The typical reanalysis products are the Copernicus Atmosphere Monitoring
Service (CAMS) reanalysis (Inness et al., 2019) produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) and the replay
dataset in Goddard Earth Observing System composition forecast (GEOS-
CF) system from NASA's Global Modeling and Assimilation Office
(GMAO) (Keller et al., 2021). In many cases, they can serve as an effective
data product in model evaluation, boundary conditions, and long-term
tendency analysis (Zhang et al., 2022; Chen et al., 2019). However, these
datasets still have bottlenecks in fine-resolution research or a long-time
horizon. In practice, CAMS is long-term but has a lower spatial and tempo-
ral resolution (0.75° and 3-h) than GEOS-CF (0.25° and 1-h); GEOS-CF has
higher resolution while covers short-term range (2018-now). On the one
hand, the coarse spatial resolution hinders fine-scale research at the
regional and global level, and the coarse temporal resolution is also not
conducive to temporal evolution analysis. On the other hand, short-term
products cannot reflect the long-term diachronic evolution of PM2.5,
which limits the application scope. Since numerical simulations of coupled
physics and chemistry on a global scale require significant computational
resources (Gu et al., 2022), conducting resolution enhancement on existing
products can be a more efficient alternative. Hence, it is worthwhile to
generate a long-term global high spatiotemporal resolution PM2.5 dataset
based on existing reanalysis products.

At present, numerous studies have applied statistical downscaling to
atmospheric parameters for resolution enhancement. Early approaches
were model-driven primarily. For example, Liu et al. (2018) adopted a
simple downscaling method to obtain surface and near-surface air temper-
ature data with high spatiotemporal resolution. Lv et al. (2017) designed a
Bayesian-based statistical downscaling predicter tomodel the spatiotempo-
ral relationships between AOD and PM2.5. Varga-Balogh et al. (2020) pro-
duced regional-level PM2.5 data in Budapest by downscaling CAMS by
linear combination. Shen et al. (2017) downscaled the near-surface PM2.5

maps through a Gaussian downscaling method. Subsequently, data-driven
approaches appeared with remarkable performance. Nourani et al. (2018)
proposed a data-driven ensemble model for downscaling of rainfall data.
Yang et al. (2020) introduced random forests for high spatial resolution
PM2.5 concentration mapping. Some works downscale directly on existing
products. Pu and Yoo (2021) used the gradient boosting machine (GBM) to
downscaledMERRA-2AOD into 1 km resolution and used the finer product
as further auxiliary. In general, most statistical downscaling methods need
to apply statistical models (predictors) to coarse-resolution data
(predictands) for information transformation. Recently, deep learning
methods based on Convolutional Neural Networks (CNN) have become a
hot spot in statistical downscaling models. Thanks to the powerful nonlin-
ear representation ability (Zhang et al., 2021b; He et al., 2022b; Wang
et al., 2020, 2022a, Zheng et al., 2021, 2022) of CNN, we can explore com-
plex statistical patterns of downscaling process. Naturally, by employing
deep learning in spatiotemporal datasets, we are able to describe spatiotem-
poral features and achieve accurate spatiotemporal downscaling. For in-
stance, Baño-Medina et al. (2020) achieved downscaling temperature and
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precipitation in Europe through deep learning neural models. Baño-
Medina et al. (2021) used CNNnetworks for downscaling of climate change
projections. Xue et al. (2019) developed a deep learning model to down-
scale meteorological variables. Wang et al. (2021a) introduced a super-
resolution network named SRDRN to bridge the resolution gap between
global scale and regional scale daily precipitation and temperature. Al-
though some studies have used downscaling approach for meteorological
parameter estimation, few efforts have been made to generate a
resolution-enhanced product from a reanalysis dataset using spatiotempo-
ral downscaling techniques.

Therefore, this paper proposes to simultaneously downscale the CAMS
PM2.5 product on spatial and temporal dimension based on deep learning ap-
proaches. The predictors used for statistical downscaling are trained on high
resolution GEOS-CF products and applied to long-term but low-resolution
CAMSproducts. Aftermodel training, we realize spatiotemporal downscaling
of CAMS and produce a long-term global high-resolution PM2.5 dataset. Spe-
cifically, DeepCAMS introduce a deep learningmodel namedXVFI (Sim et al.,
2021) used in video frame interpolation to realize×3 temporal downscaling
and increase the temporal resolution of CAMS from 3-h to 1-h. To achieve
spatial downscaling, an image super-resolution convolutional neural network
namedABPN (Liu et al., 2019) is employed to improve spatial resolution from
0.75° to 0.25°. Experiments onGEOS-CF demonstrate that theDeepCAMS can
predict the complex dynamic of PM2.5 in the temporal dimension than the
simple linear combination. Also, DeepCAMS effectively captures spatial non-
linearity and outputs fine spatial resolution results with rich details which are
closest to the actual data. In the real experiment, we applied DeepCAMS to
CAMS products to build a global hourly 0.25° PM2.5 dataset from 2003 to
2020. The proposed dataset was validated with OpenAQ PM2.5 air quality
data from 2017 to 2019, and the results showed that the correlation coeffi-
cients were consistent with the original CAMS. To sum up, the innovation
of this paper is as follows:

1) A deep learning framework (DeepCAMS) was developed to realize the
spatiotemporal downscaling of reanalysis products. It bridges the
resolution gap by introducing video frame interpolation and single-
image super-resolution techniques.

2) We proposed a long-term (2003–2020) hourly 0.25° global PM2.5

dataset through DeepCAMS. It can serve as a high quality product for
fine-grained PM2.5 research in long time series.

3) Extensive experiments demonstrate that DeepCAMS can explore the
nonlinear spatiotemporal relationship and produce accurate downscal-
ing results with spatial consistency and temporal continuity.
2. Data and method

2.1. Data source

This paper involves three datasets, including the PM2.5 product from
CAMS, PM2.5 replay product from GEOS-CF, and OpenAQ in-situ PM2.5

measurement. GEOS-CF is used for model training to learn the coarse-to-
fine statistical downscaling relationship. Besides, DeepCAMS is tested on
GEOS-CF in the simulation experiment. The pre-trained DeepCAMS is used
to implement spatiotemporal downscaling on CAMS to obtain long-term
global high-resolution PM2.5 datasets. OpanAQ is used to verify the accuracy
of the proposed dataset. These data sources will be described in detail below
and summarized in Table 1.
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2.1.1. CAMS PM2.5 product
The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis

is proposed by the European Centre for Medium Range Weather Forecasts
(ECMWF) (Kuenen et al., 2022; Jin et al., 2022). It is a global reanalysis at-
mospheric composition (AC) dataset which comprises three-dimensional
time-consistent AC fields. This AC forecasts and analyses project can
perform data assimilation and modeling for aerosols, chemical reactive
gases and greenhouse gases based on the laws of physics and chemistry.
Compared with earlier Monitoring Atmospheric Composition and Climate
(MACC) reanalysis, its spatial resolution can reach 0.75° (∼75 km). Tempo-
rally, CAMS can provide a 3-h analysisfield, forecastfield and hour-by-hour
ground forecast field. Here, we downloaded and extracted 3-h PM2.5

product with a spatial resolution of 0.75° from 2003 to 2020. Note that
the raw data needs to be multiplied by 1 × 109 to convert the default
unit kg/m3 to ug/m3. The dataset is available at https://ads.atmosphere.
copernicus.eu/

2.1.2. GEOS-CF PM2.5 replay product
The Goddard Earth Observing System composition forecast (GEOS-CF)

system is produced by NASA's Global Modeling and Assimilation Office
(GMAO) (Colarco et al., 2010; Wang et al., 2022b). Compared with CAMS,
GEOSCF has a higher spatial resolution (0.25°) and can give an hourly global
constituent prediction. Thanks to the GEOSChem chemistry module, GEOS-
CF offers replay (2018-now) and 5-days future forecasts of AC. Besides
PM2.5, many other critical meteorological products such as ozone (O3),
carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) are
also available. Here, we use the 1-h PM2.5 replay product with a spatial
resolution of 0.25° from 2018 to 2020. In our paper, this high-resolution
data is used for training set construction, model training and testing. The
dataset can be downloaded freely at https://fluid.nccs.nasa.gov/cf/

2.1.3. OpenAQ PM2.5 air quality data
OpenAQ is an innovative open platform created by scientists and open

data programmers. Its purpose is to effectively integrate air quality data
publicly released by ground-based air quality monitors around the world.
In addition, it is devoted to providing fast and uniform data access for
researchers and the public worldwide (Hasenkopf et al., 2016; Hasenkopf,
2017). In OpenAQ, real-time air quality measurements such as PM2.5,
Fig. 1. The diagram of the global distribution of
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PM10, SO2, NO2, and O3) can be collected, stored, and published through
an application programming interface (API). This paper uses PM2.5 air qual-
ity data from 2017 to 2019. The data is available at https://openaq.org/.
The global distribution of total ground stations from 2017 to 2019 is
shown in Fig. 1. A total of 6656 stations were included from 2017 to 2019.

2.2. Method

DeepCAMS implements spatiotemporal downsampling by introducing
two super-resolution (SR) networks. In the field of image processing, SR
is known as a classic low-level vision task (Liu et al., 2021; Xiao et al.,
2022a). The goal of SR is to generate high-resolution data from low-
resolution data while retaining as much spatiotemporal details as possible.
The overall framework of our DeepCAMS is exhibited in Fig. 2. To be
specific, we utilize a video frame interpolation network named XVFI to
realize temporal downscaling in steps I and II, and then we exploit a single
image SR model termed ABPN to achieve spatial downscaling in steps III
and IV. The network used for spatiotemporal downscaling is described in
detail in the following subsections. Notably, during the design of our
DeepCAMS, we did several exploratory experiments, which included the se-
quence of temporal downscaling and spatial downscaling. We found that
performing spatial downscaling first yields a slightly lower performance
than performing temporal downscaling in the first step. Therefore,
we choose to perform temporal downscaling first, followed by spatial
downscaling.

2.2.1. Temporal downscaling network
Video frame interpolation aims to synthesize the missing information

between existing frames (Choi et al., 2020; Xiao et al., 2022b; Hu et al.,
2022). This mission is similar to temporal downscaling. In Fig. 2, XVFI
are trained to predict the non-exist PM2.5 estimates {C2,C3} between two
CAMS PM2.5 maps {C1,C4} in adjacent time phase. To construct 3-h to 1-
h training pairs for supervised learning, we artificially eliminated the
existing PM2.5 maps and reduced the temporal resolution of GEOS-CF
from 1-h {G1,G2,G3,G4} to 3-h {G1,G4}. Since estimating {G2,G3} from
{G1,G4} is equivalent to predicting Gt(t = 0.33,0.66) from {G0,G1}, we
adopt this elaboration rule in the following description which is consistent
with Sim et al. (2021).
OpenAQ stations in 2017, 2018, and 2019.

https://ads.atmosphere.copernicus.eu/
https://ads.atmosphere.copernicus.eu/
https://fluid.nccs.nasa.gov/cf/
https://openaq.org/


Fig. 2. The flowchart of our DeepCAMS. The framework takes 3-h 0.75° PM2.5 product from CAMS as input and predict 1-h 0.25° high spatiotemporal resolution output.

Table 2
The quantitative results of temporal downscaling. The R, RMSE and MAE ug/m3

results in each row is the average result of all temporal interpolated samples
(16 samples a day) in each month, and the final result is the average of total
12 months (16 × 365 = 5840 samples). The best results are shown in bold.

R ↑ RMSE ↓ MAE ↓

Date Linear DeepCAMS Linear DeepCAMS Linear DeepCAMS

2020/01 0.9541 0.9588 9.30 8.63 0.66 0.35
2020/02 0.9773 0.9834 4.65 3.89 0.54 0.28
2020/03 0.9907 0.9967 2.37 1.36 0.50 0.26
2020/04 0.8929 0.9019 11.53 10.91 0.60 0.35
2020/05 0.9625 0.9731 4.34 3.26 0.50 0.27
2020/06 0.9804 0.9917 2.37 1.53 0.41 0.23
2020/07 0.9830 0.9939 2.89 1.71 0.48 0.25
2020/08 0.9816 0.9922 2.82 1.83 0.49 0.26
2020/09 0.8548 0.8640 13.60 13.25 0.68 0.43
2020/10 0.9646 0.9735 4.60 3.86 0.52 0.28
2020/11 0.9902 0.9966 2.15 1.24 0.43 0.22
2020/12 0.9828 0.9877 2.93 2.06 0.65 0.46
Average 0.9596 0.9678 5.30 4.46 0.54 0.30
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XVFI is a sophisticated network, which is only briefly introduced here,
and more details can be found in Sim et al. (2021). XVFI explore the rela-
tionship between missing information and existing estimates in a multi-
scale pyramid. Take the scale s for example, the input {G0

s ,G1
s} at scale s is

the 1/2s bicubic downsampled result of the original input {G0,G1}. After
feature extraction, the input PM2.5 maps {G0

s ,G1
s} (single channel) are con-

verted to feature maps {I0s , I1s } (32 channels) by 3 × 3 convolution. After
feature extraction, XVFI design a BiFlowNet to predicts the coarse optical

flow F
~

t0
s, F

~

t1
s

� �
between the latent PM2.5 maps Gs

t t ¼ 0:33, 0:66ð Þ and

{G0
s ,G1

s }. Then, a TFlowNet is cascaded to refine the coarse optical flow
and produce a fine-scale optical flow maps {Ft0s ,Ft1s }which are more
accuracy to depict the motion relationships. After that, {Ft0s ,Ft1s } are used
to warp {G0

s ,G1
s }and their corresponding feature {I0s , I1s } by backward

warping operation (Jaderberg et al., 2015), that is:

Gs
t0 ¼ warp Gs

0; F
s
t0

� �
; Ist0 ¼ warp Is0; F

s
t0

� �
: ð1Þ

Gs
t1 ¼ warp Gs

1; F
s
t1

� �
; Ist1 ¼ warp Is1; F

s
t1

� �
: ð2Þ

In this manner, the optical flow that encodes temporal
PM2.5 motion dynamics can be compensated to the existing PM2.5 infor-
mation to realize the information transformation. Afterwards,
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Fig. 3. The qualitative results of temporal downscaling.
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residual PM2.5 maps G
~

r
s. Finally, the predicted missing PM2.5 estimation

can be formulated by:

Gs
t ¼

1−tð Þ �ms
t � ~G

s
t0 þ t � 1−ms

t

� � � ~Gs
t1

1−tð Þ �ms
t þ t � 1−ms

tð Þ þ ~G
s
r : ð3Þ

The aforementioned process happens in scale s, and the final is the
prediction in scale 0. We follow the settings in the.
Table 3
The quantitative results of spatial downscaling. The R, RMSE andMAE ug/m3 results
in each row is the average result of all samples (24 samples a day) in each month,
and the final result is the average of total 12 months (24 × 365= 8760 samples).
The best results are shown in bold.

R ↑ RMSE ↓ MAE ↓

Date Bicubic DeepCAMS Bicubic DeepCAMS Bicubic DeepCAMS

2020/01 0.9600 0.9762 9.30 8.42 0.64 0.44
2020/02 0.9782 0.9836 4.65 3.89 0.54 0.36
2020/03 0.9897 0.9960 2.51 1.57 0.45 0.30
2020/04 0.8501 0.8981 11.53 10.91 0.56 0.40
2020/05 0.9727 0.9721 3.89 3.26 0.43 0.27
2020/06 0.9878 0.9955 2.37 1.12 0.36 0.24
2020/07 0.9735 0.9883 3.54 1.71 0.49 0.32
2020/08 0.9700 0.9888 3.54 1.83 0.49 0.31
2020/09 0.8677 0.8968 13.60 13.25 0.71 0.52
2020/10 0.9582 0.9687 4.99 3.86 0.53 0.34
2020/11 0.9880 0.9956 2.39 1.24 0.41 0.27
2020/12 0.9875 0.9948 2.75 1.77 0.44 0.29
Average 0.9569 0.9712 5.42 4.40 0.50 0.34
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XVFI and set s = 5. We adopt ℒ1 loss function to constraint training
process in each scale, which means:

ℒ1 ¼
X5
s¼0

Gs
t−Gs

t

�� ��
1: ð4Þ

Here Gt
s is the 1/2s bicubic downsampled result of the ground truth

PM2.5 mapGt. To better optimize the smoothness of the optical flow,we ad-
ditionally introduce the first-order edge-aware smoothness loss at scale 0:

ℒs ¼
X1
i¼0

exp −e2 ∇xGtj j� �T � ∇x F0
ti

		 		; ð5Þ

where e = 150 is an edge weighting factor and x represents a spatial coor-
dinate. At last, the total loss function can be expressed as follows:

ℒtotal ¼ ℒ1 þ λs �ℒs: ð6Þ

The λs is set to 0.5 to balance the training process.

2.2.2. Spatial downscaling network
The spatial downscaling aims at predicting the high-resolution PM2.5

concentration from its low-resolution counterpart (He et al., 2021, 2022a;
Jiang et al., 2019; Yi et al., 2020). To build low-resolution (LR) to high-
resolution (HR) PM2.5 training pairs, we first spatially degenerate the
GEOS-CF product from IGT (0.25°) to ILR (0.75°) through the imresize
function in MATLAB. In the simulation experiment of GEOS-CF, the total
of 24×365×2=17,520 samples in 2018 and 2019 are used for training,
and we tested the pre-trained model on GEOS-CF products in 2020. In the
real experiment on CAMS, GEOS-CF data from 2018 to 2020 were all
used for training. Although the PM2.5 concentrations may be temporally
correlated at each time phase, the time interval is usually at the hourly
level and it is difficult to exploit the redundant information. To simplify



Fig. 4. The qualitative results of spatial downscaling.
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the framework, we did not adopt a multi-frame SR approach (Bhat et al.,
2021; Haris et al., 2019) but used a single-frame SR to super-resolve
PM2.5 independently for each time phase.

ABPN is a state-of-the-art single image SR network whose core is learn-
ing recurrent up-downsampling backprojection to explore complex nonlin-
ear mappings from LR PM2.5 to HR PM2.5. The network structure is shown
in Fig. 2. After feature extraction, the input ILR goes through several
Enhanced Upsampling Back Projection blocks (EUBP) and Enhanced
Downsampling Back Projection block (EDBP). Also, Spatial Attention
Blocks (SAB) are injected to learn cross-correlation between features at
6

different levels. More details about ABPN can be found in Liu et al.
(2019). Thanks to ABPN, our DeepCAMS can predict super-resolved
PM2.5 concentration ISR from an LR input ILR:

ISR ¼ ABPN ILR
� � ð7Þ

Follow the setting in Liu et al. (2019), the ℒ1 distance between ISR

and ground truth IGT was adopted as the objective function for network



Fig. 5. The real experiment on CAMS. The first row is the original CAMS product (0.75°, 3-h), and the second and third rows correspond to the spatiotemporal downscaling
results (0.25°, hourly).
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optimization. Also, we use back propagation (BP) to updating the network
parameters:

ℒ1 ¼ ISR−IGT
�� ��

1 ð8Þ

By applying the pre-trained ABPN in step III to the temporal downscaled
CAMS outputs in step II, a high-spatiotemporal resolution PM2.5 product
can be obtained.

3. Experiment and analysis

3.1. Simulation experiment on GEOS-CF

Notably, in the simulation experiment on GEOS-CF, we only use the data
in 2018 and 2019 to train our DeepCAMS and test on 2020. Therefore, the
training set and test set are independent of each other and do not overlap.

3.1.1. Temporal downscaling
We evaluate the performance of our DeepCAMS on both quantitative

and qualitative aspects. Before that, a linear interpolation baseline is set
for comparison, which means the intermediate PM2.5 concentration Gt is
7

synthesized by linear combination of PM2.5 maps {G0,G1} at adjacent
time phases according to the temporal distance:

Gt ¼ t � G0 þ 1−tð Þ � G1 ð9Þ

The quantitative results are shown in Table 2. Here we selected all the
temporal interpolated results (16 samples a day) in each month to evaluate
the predicted PM2.5 concentrations on that month. Generally, our
DeepCAMS outperforms linear interpolation on all metrics. Compared to
linear, DeepCAMS is ahead −0.84 μg/m3 in RMSE (Root Mean Square
Error), decreases MAE (Mean Absolute Error) by nearly 44 %, and has a
higher correlation (R) with the actual PM2.5 distribution. That is, the result
predicted by DeepCAMS is closest to the real PM2.5 evolution in the tempo-
ral dimension. Since there are complex interactions between atmospheric
components, it is tough for the linear method to describe such a non-
linear chemical reaction. Besides, simple temporal interpolation cannot
accommodate various motion and physical phenomena. Hence, it naturally
results in poor performance. Thanks to the nonlinearity representation
ability of deep learning, DeepCAMS can implicitly learn the complicated
tendency of PM2.5 from adequate training samples.

The qualitative results can be found in Fig. 3, the performance gap
between DeepCAMS and linear is pronounced. We zoomed in on a local



Fig. 6. The in-situ validation of the original CAMS and our DeepCAMS based on OpenAQ platform in 2017, 2018 and 2019.
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region at 01:30 on January 1, 2020. Our DeepCAMS receives lower RMSE
(−15.8 μg/m3) than linear method. It is easy to find that the linear pro-
duces underestimation to some extent. Similarly, linear has revealed an
overestimation phenomenon for the forecast at 8:30 on April 1, 2020.
This further demonstrates that it is not easy to reflect the diverse dynamics
of PM2.5 by linear modeling. Nevertheless, DeepCAMS yields accurate pre-
dictions, proving that a deep learning-based model can thoroughly learn
the underlying nonlinear spatiotemporal relevance. All in all, the latent
PM2.5 estimates at the intermediate time phase can be precisely excavated
from the existing PM2.5 statistical distribution through our DeepCAMS.
Fig. 7. Time-series results of the original and propo

8

3.1.2. Spatial downscaling
Spatial downscaling aims to generate more detail for fine-grained

analysis. The R, RMSE, and MAE results are in Table 3, which illustrate
the superiority of DeepCAMS. We set bicubic interpolation as the
baseline and selected all samples for each day of each month for evalu-
ation. Each day contains 24 hourly PM2.5 samples, and the final average
result is the mean of the total samples (24 × 365 = 8760 samples) for
12 months. DeepCAMS still leads the baseline method on all metrics.
That shows deep learning can explore the nonlinear spatial relationship
of PM2.5 and predict the high-resolution data from the low-resolution
sed product in 2017 (top) and 2019 (bottom).



Fig. 8. The annual average (8760 samples) of our global hourly 0.25° PM2.5 dataset (left) and the annual average (2920 samples) of the original 3-h 0.75° CAMS product
(right). The proposed dataset has a good spatiotemporal consistency with the original CAMS.
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statistical distribution. In addition to quantitative performance, we
focus more on the visual effect of the spatial downscaling results. In
Fig. 4, we locally enlarge some details for better observation. On the
sample at 10:30 on March 1, 2020, DeepCAMS recovered a more realis-
tic super-resolution result and obtained clearer texture and detailed in-
formation of PM2.5 distribution. The same results can also be received in
the other three samples. The Bicubic interpolation cannot find out the
spatial regularity of PM2.5. It weighted and combined the surrounding
pixels in the sampling grid and obtained the result with severe over-
smoothing and blurring. It is worth noting that the bicubic fails to re-
cover the high-value part of PM2.5. This may be because of the unbal-
anced spread and complex relationship between the high-value and
the low-value PM2.5. We discover that high concentrations of PM2.5

tend to be concentrated in a local area in the spatial coordinate. How-
ever, bicubic has a “global-average” drawback, which will pull down
the entire concentration. DeepCAMS learned this pattern from the train-
ing data and can restore the proper statistical property of PM2.5.
9

3.2. Real experiment on CAMS

In the real experiment, we used all GEOS-CF data from 2018 to 2020 to
train our DeepCAMS, then we apply the model trained on GEOS-CF to the
CAMS dataset (0.75°, 3-h). In this manner, spatiotemporal relationships
learned in high-resolution data can be migrated to low-resolution data.
Since we have no ground truth hourly high-spatiotemporal resolution
PM2.5 product in real experiment, we demonstrate the effectiveness of
DeepCAMS based on visual validation and in-situ PM2.5 validation.

In Fig. 5, we display the results of the spatiotemporal downscaling of the
CAMS products on April 15, 2010 (from 00:00 to 03:00 UTC) and on June
15, 2020 (from 15:00 to 18:00 UTC), with yellow and gray arrows repre-
senting the time axis, respectively. Some dynamic results can be found at
https://github.com/XY-boy/DeepCAMS. In the spatial dimension, the
reconstructed products havemore apparent details comparedwith the orig-
inal CAMS dataset, and the spatial distribution characteristics of PM2.5 are
correctly preserved. In the temporal dimension, DeepCAMS legitimately

https://github.com/XY-boy/DeepCAMS
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predicts the temporal variation of PM2.5 at the non-existing time phase.
Note in the second row, the PM2.5 concentration has a decreasing trend
from 00:00 to time 03:00, and the high-value region tends to contract.
DeepCAMS correctly reflects this spatiotemporal continuum and generates
a convincing forecast. Similarly, in the third row, there is a clear tendency
for PM2.5 to become more concentrated from 15:00 to 18:00, and
DeepCAMS still deduces a reasonable evolutionary procedure. To further
verify the temporal consistency, two subregions (South America: 33°N,
72°W, Asia: 41°S, 105°W) were chosen to demonstrate the time series
variation of PM2.5 throughout the year. As shown in Fig. 7, the proposed
dataset has periodically consistent variation with the original CAMS. In
summary, DeepCAMS maintains CAMS's temporal continuity and spatial
consistency and produces a product with more acceptable spatiotemporal
resolution. In Fig. 8, we display the global PM2.5 mapping results by
averaging all samples of the corresponding year. In the previous local-
scale results, we find that DeepCAMS has finer texture, and here on the
global-scale aspects, DeepCAMS still produces a consistent distribution pat-
tern compared with the original product. This fully illustrates that the pro-
posed long-term global hourly high-spatiotemporal resolution PM2.5

dataset has a satisfactory accuracy with the original product at the regional
and global scales.

In Fig. 6, we used the OpenAQ PM2.5 air quality data from 2017 to 2019
for validation. Correlation (R) was calculated to reveal the errors between the
PM2.5 concentrations measured by the ground stations and the DeepCAMS
product. The scatter density plot for the validation explains that DeepCAMS
maintains consistent accuracy with the original CAMSwhile tripling the tem-
poral and spatial resolution. In the whole year of 2017, the original CAMS
product has a precision of R = 0.61 and DeepCAMS reaches R = 0.6. In
2018 and2019, the validation accuracy of the high-spatiotemporal resolution
product generated by DeepCAMS was slightly improved compared with the
original product, which indicates that the predicted missing PM2.5 data at
the non-existent temporal phase has a high agreement with the real situation.
Overall, DeepCAMShas substantially improved the spatiotemporal resolution
of CAMS while maintaining its accuracy.
4. Conclusion

This paper proposed a long-term global hourly 0.25° PM2.5 dataset
based on a deep learning framework (DeepCAMS). With the help of
DeepCAMS, we conducted spatiotemporal downscaling in the global
PM2.5 data products provided by CAMS and tripled its resolution on spatial
and temporal dimensions simultaneously.

For temporal downscaling, the temporal dynamic trends of PM2.5 are
deeply explored by a video frame interpolationmodel XVFI. The test results
in GEOS-CF (2020) show that DeepCAMS can reasonably infer the various
motions and complex physicochemical phenomena in the air. Compared to
a temporal linear interpolation approach, DeepCAMS correctly predict the
underlying evolution pattern of PM2.5. Real experiments on CAMS data
also prove that DeepCAMS yields temporally continuous and reasonable
predictions. For the spatial downscaling, the low-resolution PM2.5 map is
mapped to high-resolution space by a single-image super-resolution
model ABPN. Simulation experiments on GEOS-CF demonstrate that
DeepCAMS can produce more spatial detail for fine-grained analysis.
Furthermore, real experiments on CAMS illustrate that the proposed high-
quality product has a spatially consistent distribution with the original
CAMS product on regional and global scales. Finally, the validation with
the in-situ OpenAQ PM2.5 air quality data from 2017 to 2019 indicates
that the proposed dataset maintains the accuracy of the original CAMS
products. In short, the developed DeepCAMS is conductive to generate
long-term global hourly 0.25° PM2.5 product with the same credibility as
the low-resolution CAMS dataset.

In future work, we plan to develop an end-to-end spatiotemporal down-
scaling framework tomoderate the accumulation of errors due tomulti-step
processing. In addition, since the downscaling process does not introduce
auxiliary variables that can improve the accuracy, we will try our best to
10
further improve the accuracy by introducing more auxiliary variables
(such as wind speed and temperature).
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