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Abstract— Recently, convolutional networks have achieved
remarkable development in remote sensing image (RSI) super-
resolution (SR) by minimizing the regression objectives, e.g.,
MSE loss. However, despite achieving impressive performance,
these methods often suffer from poor visual quality with over-
smooth issues. Generative adversarial networks (GANs) have the
potential to infer intricate details, but they are easy to collapse,
resulting in undesirable artifacts. To mitigate these issues, in this
article, we first introduce diffusion probabilistic model (DPM)
for efficient RSI SR, dubbed efficient diffusion model for RSI
SR (EDiffSR). EDiffSR is easy to train and maintains the merits
of DPM in generating perceptual-pleasant images. Specifically,
different from previous works using heavy UNet for noise
prediction, we develop an efficient activation network (EANet)
to achieve favorable noise prediction performance by simplified
channel attention and simple gate operation, which dramatically
reduces the computational budget. Moreover, to introduce more
valuable prior knowledge into the proposed EDiffSR, a practical
conditional prior enhancement module (CPEM) is developed to
help extract an enriched condition. Unlike most DPM-based
SR models that directly generate conditions by amplifying LR
images, the proposed CPEM helps to retain more informative
cues for accurate SR. Extensive experiments on four remote sens-
ing datasets demonstrate that EDiffSR can restore visual-pleasant
images on simulated and real-world RSIs, both quantitatively
and qualitatively. The code of EDiffSR will be available at
https://github.com/XY-boy/EDiffSR.

Index Terms— Diffusion probabilistic model (DPM), image
super-resolution (SR), prior enhancement, remote sensing.

I. INTRODUCTION

SUPER-RESOLUTION (SR) is a long-standing issue and
remains an active research topic in the area of remote

sensing [10]. SR aims to reconstruct a high-resolution (HR)
image with rich texture details from a low-resolution (LR)
image [11], [12], [13]. Currently, SR has been widely explored
in remote sensing applications, including land-cover map-
ping [14], [15], [16], hyperspectral image fusion [17], [18],
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product reconstruction [19], and vehicle tracking [20]. Due
to the inherently ill-posed nature [21], [22], [23], [24], SR is
challenging, because the HR counterpart may be infinite in the
solution space given an LR input. In particular, for large-scale
Earth observation scenarios, SR becomes more complicated
owing to various degradations [25], such as atmospheric scat-
tering and platform tremors. Therefore, developing an effective
SR method to reconstruct high-quality images is indispensable
and of practical importance.

Convolutional methods have shown significant success in
modeling the nonlinear relationship between LR and HR
images in recent years. Among them, various efforts have been
made to tame the inherent ill-posedness, such as dense [26],
[27] and residual networks [28], attention-based models [3],
[29], and transformer architectures [4], [30]. However, the
existing methods often employ regression function, e.g.,
mean-squared error (MSE) and mean absolute error (MAE),
to minimize the pixel-level difference between super-resolved
results and ground-truth images. Despite obtaining favorable
peak signal-to-noise ratio (PSNR) performance, these optimal
objects can lead the model to average the pixel distance,
resulting in oversmooth results. To restore visually convinc-
ing details, deep generative adversarial networks (GANs) [5]
have been explored. Such methods exploit the adversarial
optimization between the generator and the discriminator to
encourage the generator to recover realistic images. In general,
GANs require carefully designed loss functions as auxiliary,
e.g., perceptual loss [6] and gradient loss [7], to optimize the
distance in the feature domain. Although GANs can generate
rich details, they often suffer from training instability and are
easy to collapse, leading to undesirable artifacts.

Recently, diffusion probabilistic models (DPMs) [31] have
received increasing attention in the realm of image-to-image
translation and also achieved promising performance in SR
tasks [8], [32], [33], [34]. The key to DPM is the reverse
diffusion process, which iteratively predicts various noises
from a noisy image. In this manner, DPM can generate
high-quality data distributions from random noise. Because of
its principled and well-defined probabilistic diffusion process,
DPM can mitigate the training instability that commonly
occurs in GANs and generate more complex distributions.
More recently, Saharia et al. [8] pioneered the DPM-based
SR method and utilized the UNet as the denoiser to generate
images by iterative refinement. To better simulate the degra-
dation process, Luo et al. [9] proposed stochastic differential
equations (SDEs) to model the diffusion process. Nevertheless,
most DPM-based SR methods remain confined within the
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Fig. 1. Relationship between FID [1] performance and parameter of SOTA
SR methods (lower FID values indicate better generative quality). EDSR [2],
RCAN [3], and HAT-L [4] are regression-based models, typically generating
low-quality distribution. The GAN-based approaches (MSRGAN [5], ESR-
GAN [6], and SPSR [7]) and DPM-based methods (SR3 [8] and IRSDE [9])
can produce high-quality images. Our EDiffSR achieves the best performance
and is far more lightweight than SOTA DPM-based SR models.

paradigm of image synthesis tasks, lacking insightful design
for SR tasks. Specifically, the following hold.

1) Prior Knowledge in LR Image, Which Is Critical for
SR Tasks, Is Rarely Explored: Following the paradigm
of image synthesis, the LR image is often directly
upsampled by bicubic interpolation to serve as the
condition. This preprocessing scheme lacks elaboration
and can only convert partial prior knowledge into a
diffusion model. As a result, it may lead to suboptimal
performance.

2) Vanilla UNet Consumes Massive Computational Cost
and Is Less Effective in SR Tasks: In contrast to image
synthesis, which needs to predict an image from scratch,
more pixels of SR are given. Thus, employing a large
network for noise prediction is inefficient.

To this end, this article explores the application of DPM and
devises an efficient diffusion model for RSI SR (EDiffSR).
Unlike previous work that applied bicubic-upsampled LR
image as the condition, we developed a novel conditional
prior enhancement module (CPEM) to effectively leverage
prior knowledge in LR images. It promotes the condition with
more informative and plentiful input. Moreover, an efficient
activation block (EAB) is devised to form our denoising
network (EANet), achieving favorable denoising capability
while maintaining a far more lightweight design. As illustrated
in Fig. 1, our EDiffSR achieves impressive performance while
with significantly fewer parameters than previous DPM-based
SR approaches (e.g., SR3 [8] and IRSDE [9]). In addi-
tion, we equip our EDiffSR with the SDEs [9] to further
facilitate the sampling process in the diffusion process. Exten-
sive evaluations on four remote sensing datasets demonstrate
the superiority of our EDiffSR in both perceptual quality
and quantitative metrics over the state-of-the-art (SOTA)
regression-based, GAN-based, and DPM-based models.

In summary, the main contributions of this study are
summarized as follows.

1) We pioneer an efficient yet effective DPM (EDiffSR)
for remote sensing image (RSI) SR. By introducing

more prior knowledge into the diffusion model with
elaborate CPEM, our EDiffSR can achieve accurate SR
performance.

2) The proposed EANet can exceed the previous SOTA
methods in noise prediction while with lower computa-
tional cost. It provides a new perspective for exploring
more efficient diffusion-based frameworks.

The remainder of this article is organized as follows.
Section II reviews the progress of image SR and diffusion
models. Section III presents some preliminary of the diffusion
process. Section IV introduces the implementation details of
our EDiffSR. Section V contains experiments and analysis.
Section VI is the conclusion.

II. RELATED WORK

A. Deep Learning-Based Image SR

1) Regression-Based Models: Inspired by the success of
SRCNN [35], numerous elaborate CNN architectures have
been proposed, such as very deep [28] and wide [2] archi-
tectures, attention mechanism [3], [29], and transformer [4].
Recently, Chen et al. [4] proposed an impressive method
by combining the advantage of channel attention and
self-attention to activate more useful information for SR. How-
ever, most regression-based SR approaches predict the target
distribution by minimizing the MSE (L2) or MAE (L1) loss.
While achieving high PSNR values, the regression functions
often tend to encourage the network to “average” a certain
region, leading to an undesirable oversmooth issue. In contrast,
our EDiffSR can benefit from the generative capability of
DPM to recover more realistic distributions, improving the
visual quality of SR results by a large margin.

2) GAN-Based Models: To promote visual pleasure, GAN-
based SR approaches introduce elaborate auxiliary loss to
guide the network to generate photorealistic results. For exam-
ple, Ledig et al. [5] pioneered the perceptual loss that measures
the featurewise distance between the restored image and the
ground-truth image in VGG feature space [36]. To tame the
training stability, Wang et al. [6] put forward an enhanced
SRGAN (ESRGAN) with modified discriminative constraints
while removing batch normalization (BN) to avoid artifacts.
Sajjadi et al. [37] developed a texture loss to preserve the
high-frequency textual details. Recently, Ma et al. [7] pro-
posed a structural preserving GAN that maintains structural
information by the gradient loss. Although GANs can bring
impressive improvement in visual quality, they often face harsh
optimization problems. Moreover, we often require laborious
tricks to strike the balance between these carefully designed
loss functions. Benefiting from the well-defined diffusion
process, the proposed EDiffSR offers a stable and interpretable
training process.

3) Diffusion-Based Models: Diffusion models use a fixed
Markov chain to optimize the variations boundaries of the like-
lihood function and have recently received increasing attention
due to their excellent performance on generative tasks [38].
In SR task, research on diffusion modeling is still in its
infancy. Until recently, Saharia et al. [8] proposed to generate
results that exceed those of the GAN with iterative refinement.
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Fig. 2. Overview of the forward and reverse diffusion processes defined by mean-reverting SDEs. The forward diffusion gradually degrades the high-quality
and HR image x0 to its low-quality counterpart via xT = µ+ ε. The reverse diffusion learns to characterize the noise and reconstruct the corresponding HR
image.

Li et al. [32] first introduced the residual prediction in DPM
for face image SR. More recently, Xia et al. [39] exploited
the transformer block to model the long-range discrepancy
for effective image restoration. Luo et al. [9] proposed an
averaging-equation idea to simulate the image degradation
process while realizing a faster diffusion process. However,
current DPM-based SR models often rely on large models
for noise prediction. The high complexity of denoisers limits
their practical application and leads to inefficient inference
in large-scale remote sensing scenarios. In contrast, the pro-
posed EDiffSR achieves favorable noise prediction with a
far more lightweight EANet. Besides, the existing methods
barely consider the prior information in images, which is
crucial for SR tasks, thus resulting in suboptimal performance.
The proposed EDiffSR seeks a more desirable condition by
exploring informative cues from the LR images, which further
boosts the SR performance.

B. RSI Super-Resolution

Early SR methods for RSI are regression-based, aiming to
achieve high PSNR performance [40], [41], [42]. In this parse,
more efforts have been paid to improve the network structure,
making the convolution network grasp more characteristics of
RSIs, such as multiscale design [43], [44], [45], numerous
attentions [46], [47], and guided SR [48]. Li et al. [49]
proposed a novel dual-stage network to reconstruct more
missing details in remote sensing imagery in a coarse-to-fine
manner. Recently, Li et al. [50] put forward to transfer more
beneficial supplementary from red-green-blue (RGB) images
to remote sensing scenes. However, as PSNR tends to penalize
the reconstruction of high-frequency details, these methods
cannot reflect human preference well in RSI.

To recover visual-pleasant details in RSI, various
GAN-based methods have been proposed. Lei et al.
[51] proposed a coupled-discriminated GAN for better
discrimination. Jiang et al. [52] proposed an edge-enhanced
GAN by optimizing the high-frequency and low-frequency
components simultaneously. Haut et al. [53] proposed to train
a GAN in an unsupervised manner without the HR RSI.
Recently, Tu et al. [54] incorporated the long-range modeling
capability of the Swin transformer [55] into GAN, achieving
favorable perceptual quality of SR results. However, these
approaches often involve complex optimization functions
and network structures, leading to training instability.
In contrast, this article proposed an efficient solution to

recover perceptual-pleasant RSI, mitigating the training
instability of GAN.

In the area of remote sensing, some researchers have applied
diffusion modeling to SR tasks [33], [56]. However, they
borrow too much from the paradigm in image synthesis, which
uses a large UNet for noise estimation, resulting in inefficient
inference in SR tasks. In addition, there is a lack of considera-
tion of incorporating the valuable prior knowledge in diffusion
to generate high-frequency details in RSIs. In this article,
we demonstrate that a low-complexity network can provide
a more practical and efficient scheme to deliver competitive
denoising performance in SR tasks when compared with SOTA
methods employing larger models, such as UNet. In addition,
unlike simple bicubic upsampling, we choose to explore more
prior information to generate informative conditions, thus
further enhancing the diffusion model to generate realistic
distributions.

III. PRELIMINARY

A. Forward Diffusion Process

The forward diffusion process aims to gradually transform
the initial data distribution x0 to a noisy image xT after
time step T . As shown in Fig. 2, we define the ground-truth
image IHR as x0. As such, xT can approximately to the
combination of the bicubic-upsampled LR image µ and a
pure Gaussian noise ε ∼ N (0, δ2). Here, δ2 represents the
stationary variance. This article adopts the mean-reverting
SDEs [9] to define the diffusion process, as it allows for an
efficient sampling process. Specifically, as illustrated in Fig. 2,
the forward diffusion process is depicted as follows:

dx = λt (u − x)dt + φt dw (1)

where w refers to a standard Wiener process. λt and ρt are
two time-dependent parameters that control the speed of mean
reversion and stochastic volatility, respectively. To make (1)
have a closed-form solution, we set φ2

t /λt = 2δ2. As shown
in Fig. 2, given an HR image x0 and t ∈ [0, T ], for an
intermediate moment t , the corresponding state xt can be
strictly expressed by the closed-form solution of ((1))

xt = µ+ (x0 − µ)e−λ̄t +

∫ t

0
φze−λ̄t dw(z) (2)

where λ̄t is equal to
∫ t

0 λzdz. The proof of (2) can be
found at [9]. In this case, xt follows a Gaussian probability
distribution pt (x), expressed as follows:

xt ∼ pt (x) = N (xt |m t (x), nt ) (3)
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Fig. 3. Overall framework of our EDiffSR. It consists of three parts: the condition part, EANet, and the optimization part. In the condition part, CPEM
is designed to explore more priors from the original LR image. EANet takes the condition as input and characterizes the noise distribution. Compared with
the primary UNet, it is more efficient and effective owing to the EAB. The optimization process adopts the maximum likelihood learning for a more stable
diffusion process.

Fig. 4. Flowchart of CPEM. We adopt the RCAB to extract rich prior
information.

where m t (x) = µ+(x0−µ)e−λ̄t and nt = δ2(1−e−2λ̄t ) are the
mean and variance of this Gaussian distribution, respectively.
It is easy to observe that as the diffusion time t → ∞, m t

and nt would converge to µ and δ2, i.e., the terminal state
xT ≈ µ+ε, which aligns with the aim of the forward diffusion
process.

B. Reverse Diffusion Process

Reverse diffusion aims to recover the HR image from the
terminal state xT . We can define the reverse diffusion process
by simulating the reverse-time SDE as follows:

dx =
[
λt (u − x)dt − φ2

t ∇x log pt (x)
]
dt + φt dw̄ (4)

where w̄ denotes a reverse-time Wiener process. ∇x log pt (x)
is the ground-truth score during inference stage. Note that in
the training stage, the ground-truth image x0 is available; thus,
we can leverage more pleasurable conditional scores during
model training. In particular, it can be defined by

∇x log pt (x |x0) = −
xt − m t (x)

nt
. (5)

Furthermore, we reparameterize xt to xt = m t (x) +
√

ntεt ,
where εt is a standard Gaussian noise with the distribu-
tion N (0, I ). The ground-truth scores can be expressed as
−(εt/

√
nt ). Since m t (x) and nt are known, then we just need

to estimate the noise using a noise prediction network fψ .

Similar to DPM [31], we compute the Euclidean distance
between the predicted noise and the ground-truth noise εt by
the following formula:

L(ψ) =

T∑
t=0

γtE


∥∥∥∥∥∥∥ fψ (xt , u, v, t)︸ ︷︷ ︸

predicted noise ε̄t

−εt

∥∥∥∥∥∥∥
 (6)

where γt denotes the positive weight and v refers to the
original LR image.

IV. PROPOSED METHOD

A. Overview

Fig. 3 details the flowchart of our proposed EDiffSR.
In the input part, we perform conditional prior enhancement
to generate a more pleasurable condition for noise predic-
tion. Specifically, the prior enhancement module fCPEM takes
the random noise εt , LR image v, and the corresponding
bicubic-upsampled LR image Ī LR as input, and then produces
the enriched condition I t by the following formula:

I t = fCPEM(v, ε̂t )+ f3([µ, εt ]) (7)

where ε̂t = Fold(εt ) represents that we adopt the pixel-folding
operator to downsample the scale of εt without loss spatial
information. f3(·) is a 3 × 3 convolution, and [·] represents
channelwise concatenation. Subsequently, a conditional time-
dependent network fψ takes the pleasurable condition and time
t as input, aiming to output a pure noise

ε̄t = fψ (I t , t). (8)

Here, we proposed an EANet for noise prediction. Finally,
we can optimize fψ until it converges.
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Fig. 5. Illustration of the EAB.

B. Conditional Prior Enhancement Module

Most previous methods have typically prepared the condi-
tion input by simply upsampling the LR image using bicubic
interpolation. However, for SR tasks, this scheme may lose
critical structure information, resulting in suboptimal condi-
tional inputs. In contrast, our EDiffSR proposes to generate
a more informative condition by exploring additional prior
knowledge from the LR image, thus enriching the condition
information for better SR performance.

As shown in Fig. 4, the CPEM mainly consists of a convolu-
tion layer and ReLU activation, followed by stacked residual
channel attention blocks (RCABs) [3] and an upscale layer.
To unify the scale of noise and the LR image, we first convert
εt to the noisy cube using pixel folding. Then, we concatenate
and pass them through a 3 × 3 convolution layer followed
by ReLU activation to perform shallow feature extraction,
depicted as follows:

I 0 = ReLU(Conv(Concat(v, ε̂t ))). (9)

Subsequently, n cascaded RCABs fRCAB are used to achieve
deep feature extraction and stabilize the gradient by global
residual connection

I deep = f n
RCAN(I 0)+ I 0. (10)

Following that, a 3 × 3 convolution and a PixelShuffle
layer [57] are used to get the condition yield from CPEM:

I CPEM = PixelShuffle(Conv(I deep)). (11)

Fig. 6. Flowchart of (a) simple channel attention and (b) simple gate
operation.

C. EANet for Noise Prediction

As illustrated in Fig. 3, the key component of our EANet
is the EAB. Fig. 5 displays the architecture of the EAB,
showcasing its lightweight design. The EAB primarily consists
of depthwise convolution (DWConv), simple channel attention,
and simple gate operations. This lightweight design results
in significantly lower computational complexity when com-
pared with large UNet architectures that incorporate channel
attention or self-attention mechanisms. As discussed before,
in the context of SR tasks, the majority of pixels are known.
Therefore, a large model running massive calculations is
inefficient in SR and may lead to a suboptimal performance
due to redundant inference. Our EANet offers a more practical
scheme to achieve favorable denoising performance with a
lightweight model.

As shown in Fig. 5, given an input X and time step t , EAB
predicts an output Y . In particular, t will be projected to two
flatten features α and β by MLP layer for feature modulation

F = f1×1(α1 ⊙ Norm(X)+ β1). (12)

More precisely, α functions as a scaling operation, while
β is adopted for feature shift. In this manner, the time
step t can be embedded into our EANet, making EANet
aware of the current state of the diffusion process for better
noise prediction. Subsequently, we use multiscale DWConv to
explore the multiscale knowledge in RSI. Within each scale,
we incorporate additional nonlinear representations through
the use of simple channel attention and simple gate activation,
as illustrated in Fig. 6. To simplify the channel attention [3],
we eliminate the convolution layer and sigmoid activation. The
simple gate activation is essentially an elementwise product
operation applied to the feature maps. The multiscale simple
activation process can be expressed as follows:

F3
= SCA(SimpleGate( f3×3(F)))

F5
= SCA(SimpleGate( f5×5(F)))

F7
= SCA(SimpleGate( f7×7(F))).

(13)

After that, we set a 1 × 1 convolution to aggregate these
multiscale representations F ′

= f1×1(Concat(F3, F5, F7)).
After layer norm, we conduct modulation with the scaling and
the shifting operation

F̄ = α2 ⊙ Norm(F ′)+ β2. (14)

Finally, the output Y can be obtained via the following
formulation:

Y = f1×1(SimpleGate( f1×1(F̄)). (15)
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Following previous works [9], [33], we form our EANet
to a U-shape encoder–decoder structure. During the encoding
phase, we employ a sequence of EABs and a convolution
operation with a stride of 2 to progressively downsample
the feature maps. In the decoding phase, multiple EABs and
pixel-shuffle layers are used to upscale the features. The
number of EABs in the encoder and decoder component is
denoted as [m1,m2,m3,m4] and [n1, n2, n3, n4], respectively.
In addition, we introduce k EABs in the middle of the EANet.

D. Optimization and Inference

Although (6) can provide a straightforward solution to
optimize the EANet, the diffusion model often suffers from
instability in the training process. The key reason is predicting
an instantaneous distribution of noise is not an easy task.
Therefore, we modified the training object by using a max-
imum likelihood learning strategy used in [9]. To optimize
EANet, specifically, we choose to minimize the Euclidean
distance below

L(ψ) =

T∑
t=0

γtE


∥∥∥∥∥∥∥xt − (dxt ) fψ︸ ︷︷ ︸

reversed xt−1

−x∗

t−1

∥∥∥∥∥∥∥
 (16)

where x∗

t−1 is the ideal state reversed from xt . The closed form
of x∗

t−1 can be determined by the following formula:

x∗

t−1 =
1 − e−2λ̄t−1

1 − e−2λ̄t
e−λ′

t (xt − µ)

+
1 − e−2λ′

t

1 − e−2λ̄t
e−λ̄t−1(x0 − µ)+ µ. (17)

The proof can be referred to [9]. In brief, we transformed
the distance between the predicted noise and ground-truth
noise into another domain, i.e., the distance between the ideal
state and the predicted state. This scheme helps to reduce the
optimization instability, as most pixels in reversed states are
known.

In the inference procedure, we utilize the pretrained fψ to
predict HR images by sampling from the random state xT

and iteratively solve the SDE with numerical solutions, such
as the Euler–Maruyama method [58]. To better understand
the training and inference process of our EDiffSR, we sum-
marize these processes in two algorithms, as presented in
Algorithms 1 and 2.

V. EXPERIMENT AND DISCUSSION

A. Dataset

We use four public remote sensing datasets to comprehen-
sively evaluate the effectiveness of the methods in this article,
including AID [59], DOTA [60], DIOR [61], and NWPU-
RESISC45 [62]. The training set in this study consists of
3000 randomly selected images from the AID dataset with
an image size of 640 × 640. Specifically, we randomly select
100 images in each of the 30 categories of AID to build the
training set. In addition, we have selected ten images from
each category that do not overlap with the training set to
form the test set, resulting in a total of 300 test images.

Furthermore, we have used a subset of images from the DOTA
dataset and the DIOR dataset for testing, consisting of 700 and
1000 images, respectively. These images have a resolution of
512 × 512. As a result, our test set comprises a total of
2000 images. In our simulated experiments, we used bicubic
interpolation for image degradation. NWPU-RESISC45 data
were only used for real-world analysis without any simulated
degradation. To save the inference cost, we randomly selected
315 images from NWPU-RESISC45 and cropped them to
128 × 128.

B. Implementation Details

This study focus on 4× SR, i.e., r = 4. In our final
EDiffSR, we incorporate five RCAB in the CPEM for prior
enhancement. The innerchannel number in EANet is set to
C = 64. Following prior works [9], [33], the depth of the
noise prediction network is set to 4. In particular, the number
of EAB in each depth [m1,m2,m3,m4] and [n1, n2, n3, n4]

is set to [14, 1, 1, 1] and [1, 1, 1, 1], respectively. We include
one EAB at the middle layer of EANet, i.e., k = 1. To train
our EDiffSR, we perform 500 000 iterations with a mini-batch
size of 4. The initial learning rate is set to 4 × 10−5 and
decays following a cosine schedule. We utilize the AdamW
optimizer with β1 = 0.9 and β2 = 0.999. The total step of
the diffusion process is T = 100. All SR methods involved
in this article were retrained from scratch on the AID training
set. For a fair comparison, we did not perform any pretraining
and fine-tuning processes in our EDiffSR. Our experiments
are implemented on PyTorch with a 24-GB memory NVIDIA
RTX 3090 GPU.

C. Metrics

In this article, seven metrics are used to comprehensively
evaluate the performance of SR model. In the simulation
experiments, where the ground-truth image is available, we uti-
lize five full-reference metrics: Fréchet inception distance
(FID) [1], learned perceptual image patch similarity (LPIPS)
[63], deep image structure and texture similarity (DISTS) [64],
and the widely used PSNR and the structural similarity index
(SSIM) [65]. These metrics help assess the distance between
the generated images and the ground-truth images. Among
them, FID is widely used to measure the generative quality of
the generative model. It enhances the inception score (IS) [66]
metric by directly measuring the feature-level distance without
the need for a classifier. In real-world experiments without
ground-truth images, we additionally report the results on two
reference-free metrics: natural image quality evaluator (NIQE)
[67] and average gradient (AG). These metrics offer insights
into the perceptual quality and the high-frequency details of
the generated images.

D. Comparison With SOTAs

We compared our EDiffSR with SOTA SR approaches,
including EDSR [2], RCAN [3], HAT-L [4], MSRGAN [5],
ESRGAN [6], SPSR [7], SR3 [8], and IRSDE [9]. We selected
these methods, as they represent the mainstream approaches
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Algorithm 1 Training of our EDiffSR

Input: HR image x0 = IH R , LR image v = IL R , upsampled LR image µ = Ī L R , total step T .
1 Initialization: Random sample εt ∼ N (0, δ2), t ∈ [0, T ], T = 100.
2 repeat
3 I t = fCPEM(v, ε̂t )+ Conv([µ, εt ]); // Enhance
4 ε̄t = fψ (It , t); // Predict noise
// Substitute score into (6)

5 dxt = [λt (u − xt )dt − φ2
t
ε̄t√
nt

]dt + φt dw̄;
6 L(ψ) = γtE[|| xt − (dxt ) fψ︸ ︷︷ ︸

reversed xt−1

−x∗

t−1||]; // Loss

7 ∇ψL; // Gradient descent
8 until converged

Algorithm 2 Inference of Our EDiffSR

Input: LR image v = IL R , upsampled LR image µ = Ī L R , total step T .
Output: The super-resolved image IS R .

1 Initialization: Random sample xT ∼ N (0, δ2), fψ is the pre-trained EANet, EM(·) is Euler–Maruyama method,
T = 100.

2 for t = T : 1 do
3 ε̄t = fψ (xt , u, v, t); // Predict noise

// Substitute score into (6)

4 dxt = [λt (u − xt )dt − φ2
t
ε̄t√
nt

]dt + φt dw̄;
5 xt−1 = xt − EM(dxt ); // Reverse SDE
6 end
7 IS R = x0;

in the field, ensuring a comprehensive evaluation. Specifically,
EDSR, RCAN, and HAT-L are regression-based approaches
that adopt wide CNN, channel attention, and transformer
architectures, respectively. Note that MSRGAN is a modified
version of SRGAN, where the BN layer is removed to avoid
artifacts, and it employs the same perceptual loss as ESRGAN.
SPSR employs carefully designed gradient loss to preserve
structural details and has demonstrated favorable performance.
On the other hand, SR3 and IRSDE are SOTA diffusion-based
models. We retrained these comparative approaches on the
AID training set according to their official implementation
settings.

1) Quantitative Comparison: Results of FID values on
30 categories of the AID test set are reported in Table I.
In each row, we highlighted the best and the second-best FID
performance. We can find, in most remote sensing scenes,
our EDiffSR achieves favorable FID performance against all
comparative models. However, due to the complex diversity of
remote sensing scenes, achieving generalization across various
scenes remains a challenging task. Specifically, EDiffSR out-
performs the second-best approach (IRSDE) by an average
margin of 1.63 in terms of FID. These results reveal that
EDiffSR can provide robust high-quality data distribution in
various remote sensing scenarios, highlighting its favorable
generative capability.

In addition, we presented the average FID, LPIPS, DISTS,
and NIQE values across the AID, DOTA, and DIOR test sets in
Table II. We observed that our EDiffSR still achieves the best

FID performance across these test sets. It is worth highlighting
that GAN-based models excel in achieving the best LPIPS
results, because they usually adopt the VGG space [36] to
compute the perceptual loss, which aligns with the calculation
of LPIPS. In this case, our EDiffSR achieves acceptable LPIPS
results and surpasses diffusion-based approaches by a large
margin. For instance, compared with SR3, EDiffSR exhibits
a remarkable 0.0647 improvement in terms of LPIPS. When
compared with IRSDE, we achieve superior LPIPS perfor-
mance (0.1898 versus 0.2419) in the DIOR dataset. Notably,
both IRSDE and EDiffSR utilize the same diffusion process
equation, i.e., SDE. Therefore, the results demonstrate the
superiority of our EANet in providing effective noise predic-
tion capabilities compared with the commonly employed UNet
architecture in IRSDE. As for the DISTS metrics, we observe
that despite SPSR focusing on preserving structural details,
it only achieves the second-best performance on the DOTA and
DIOR datasets. In contrast, our EDiffSR excels in attaining the
best DISTS scores for both DOTA and DIOR, highlighting its
remarkable capability to restore accurate structural details in
RSIs. Moreover, EDiffSR can achieve the best NIQE values
in almost all test sets. As a result, the proposed EDiffSR does
recover realistic results that align well with human perception.

Besides the above results, the PSNR and SSIM results
are also tabulated in Table III. The best and second-best
performances within each category of methods are highlighted
in bold and underlined. PSNR-oriented models, such as EDSR,
RCAN, and HAT-L, achieve higher PSNR and SSIM scores
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TABLE I
QUANTITATIVE FID COMPARISON WITH SOTA SR MODELS ON 30 SCENE CATEGORIES OF THE AID TEST SET.

THE BEST FID VALUE IN EACH CATEGORY IS HIGHLIGHTED IN RED, WHILE THE SECOND BEST IS IN BLUE

TABLE II
QUANTITATIVE COMPARISON WITH SOTA SR MODELS IN TERMS OF FID, LPIPS, DISTS, AND NIQE ACROSS AID, DOTA,

AND DIOR TEST SETS. THE BEST PERFORMANCE VALUE IS HIGHLIGHTED IN RED, WHILE THE SECOND BEST IS IN BLUE

when compared with GAN-based and DPM-based SR meth-
ods. This is because they optimize MSE, which provides a
straightforward learning objective for high PSNR performance.
In particular, PSNR and SSIM are inconsistent with human
perceptual while guiding the network to generate oversmooth
content. As demonstrated in Table II, despite HAT-L achiev-
ing the highest PSNR score, it gains undesired scores in
terms of FID, DISTS, and LPIPS. Furthermore, PSNR-driven
methods tend to produce blurry results, resulting in poor
perceptual quality. In the DPM-based category, our EDiffSR

consistently delivers higher quality results while maintaining
the best PSNR/SSIM performance. When compared with SR3,
we achieve a significant improvement in terms of PSNR
(27.40 versus 26.24 dB) in the AID test set, demonstrating
that our lightweight EANet is capable of providing excellent
denoising performance in SR tasks.

2) Qualitative Comparison: We conducted a visual compar-
ison with all comparative models. From Fig. 7, we find that
our EDiffSR can consistently produce photorealistic results
that surpass SOTA approaches. For the “center_256” in AID,
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Fig. 7. 4× visual comparisons with SOTA SR models on AID test set. The results show that our EDiffSR significantly outperforms comparative approaches
in high-frequency detail recovery while producing visually pleasing images that are more natural. Zoomed-in view for a better view.

both RCAN and HAT-L produce blurry results, highlighting
the limited generalization of PSNR-oriented models in recov-
ering rich details. In contrast, GAN-based models can restore
shape details, especially edge information, but often introduce
severe artifacts inconsistent with the ground truth. EDiffSR
consistently delivers more natural and realistic results, demon-
strating its capacity to generate visually pleasing images. For
the “mediumresidential_170” image, RCAN and HAT-L still
exhibit an oversmoothed appearance, while other GAN-based
and diffusion-based models yield more natural results with
realistic details. Compared with IRSDE and SR3, which
directly adopt the bicubic interpolation to prepare conditions,
EDiffSR contains more context details that are close to the
ground-truth image, such as the the marks on the road. The
results demonstrate that the proposed CPEM is helpful in
exploring more useful priors, e.g., edge information, thus
boosting the performance of DPM in SR tasks.

In Fig. 8, we also visualize some SR results on the
DOTA test set. As shown in Fig. 8, both regression-based

TABLE III
QUANTITATIVE COMPARISON WITH SOTA SR MODELS IN TERMS

OF PSNR, AND SSIM ACROSS AID, DOTA, AND DIOR
TEST SETS. THE BEST PERFORMANCE VALUE IN EACH

MODEL TYPE IS HIGHLIGHTED IN BOLD, WHILE
THE SECOND BEST IS IN UNDERLINE

approaches and GAN-based models fail to achieve satisfac-
tory detail, especially in terms of edges and textures. For
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Fig. 8. 4× visual comparisons with SOTA SR models on DOTA test set. Zoomed-in view for a better view.

Fig. 9. 4× visual comparisons with SOTA SR models on DIOR test set. Zoomed-in view for a better view.

“img_591” from DOTA, only EDiffSR successfully restores
the clear and sharp details of the building on the ground.
In “img_036”, MSRGAN, SR3, and IRSDE exhibit severe
distortion, which deviates from the ground-truth distribution.

HAT-L and ESRGAN can offer relatively realistic distribu-
tion, restoring accurate direction of the lines on the road.
Nevertheless, the results obtained from ESRGAN exhibit
an unnatural appearance due to the oversharpening issue.

Authorized licensed use limited to: Wuhan University. Downloaded on January 23,2024 at 08:33:07 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: EDiffSR: AN EFFICIENT DIFFUSION PROBABILISTIC MODEL 5601514

TABLE IV
QUANTITATIVE COMPARISON WITH SOTA SR MODELS IN TERMS OF NIQE, AND AG ON NWPU-RESISC45 TEST SET. THE

BEST PERFORMANCE VALUE IS HIGHLIGHTED IN RED, WHILE THE SECOND BEST IN BLUE

Fig. 10. 4× visual comparisons with SOTA SR models on NWPU-RESISC45
with real-world degradations. Zoomed-in view for a better view.

In contrast, EDiffSR accurately generates these details and
appears more natural perception. These results highlight the
capability of CPEM to explore additional prior information,
enabling EDiffSR to recover more details that align with the
realistic distribution of the ground truth.

In Fig. 9, we zoomed in and displayed some visual results
from the DOIR dataset. As shown in “img_895,” EDiffSR
exhibits an impressive visual performance, outperforming
other methods in accurately recovering the direction of the
lines on the building roof. In this context, reconstructing such
high-frequency information can be challenging. All methods
yielded a completely wrong distribution of these details, except
our EDiffSR. Benefiting from our condition prior enhancement
module (CPEM), more high-frequency prior information can
be explored and introduced into the diffusion process, making
the output images consistent with the spatial distribution
of ground-truth images. In “img_366,” we zoomed in on
the stadium region for comparison. It is evident that our
EDiffSR reconstructs the most realistic results, whereas the
other models exhibit significant distortion and blurring.

3) Real-World Comparison: We also evaluate the perfor-
mance of our EDiffSR on real-world RSIs, i.e., without
performing simulated degradations. Table IV shows the quanti-
tative comparison of EDiffSR against SOTA methods in terms
of NIQE and AG. We can see that EDiffSR achieves the
best NIQE performance, illustrating our method can restore

TABLE V
ABLATION ANALYSIS OF EDIFFSR WITH DIFFERENT COMPONENTS. THE

BEST FID, PSNR, AND NIQE PERFORMANCE IS SHOWN IN BOLD

natural images that align with human perception in real-world
scenarios. In addition, the best AG performance demonstrates
that our reconstructed image contains more high-frequency
detail information, such as edges and textures.

More intuitively, we display the visual comparison on the
NWPU-RESISC45 dataset. The qualitative results are shown
in Fig. 10. We can see that the PSNR-driven approach
HAT-L exhibits a significantly blurry effect compared with
the other approaches, whereas GAN-based methods, such as
MSRGAN, produce excessively sharpened results accompa-
nied by pseudo-details. In the diffusion-based methods, SR3
shows limitations in recovering precise edge information of the
dense lines on the ground. In contrast, our method demon-
strates the clearest preservation of high-frequency texture
information, with minimal blurring and artifacts.

E. Ablation Studies

In this section, we conduct extensive experiments to demon-
strate the effectiveness of each component within our EDiffSR.

1) Component Analysis of EDiffSR: To investigate the holis-
tic effectiveness of each part within EDiffSR, we remove the
conditional prior enhancement ( fCPEM), the EANet to form the
three models reported in Table V. Note that once we remove
the EANet, we replace it with the Vanillia UNet for noise
prediction. By comparing Model-1 and EDiffSR, we can find
that EANet is superior in improving the FID performance than
UNet (30.83 versus 32.68) while reducing the model size by
a large margin (26.31M versus 137.15M). After adding the
fCPEM in Model-2, we observe a slight parameter increase,
but the improvement in FID is significant. When the whole
fCPEM and EANet are absent in baseline, the model performs
poorly in FID. These results demonstrate that the proposed
fCPEM and EANet are able to improve the performance of the
diffusion model. Besides, both fCPEM and EANet have low
complexity, allowing EDiffSR efficient yet effective.

2) Effectiveness of EANet: We first investigate the impact
of varying channel numbers of EANet. As shown in Fig. 11,
we find that EDiffSR achieves slightly superior FID perfor-
mance when C = 128 compared with C = 64. However, it was
observed that EDiffSR yields the highest PSNR results when
C = 64. To strike a favorable balance between model size and
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Fig. 11. Ablation analysis of EANet with different channel numbers C .

Fig. 12. 4× visual comparisons of the EDiffSR model without and with the
CPEM fCPEM on “img_074” from the DOTA test set. Image restored by the
complete EDiffSR shows more high-frequency details than those recovered
without fCPEM.

TABLE VI
ABLATION ANALYSIS OF EANET WITH DIFFERENT SCALES OF CONVO-

LUTION. 3 × 3, 5 × 5, AND 7 × 7 REPRESENT SINGLE-SCALE DESIGN
WITH DIFFERENT DWCONV KERNELS. EDIFFSR ADOPTS THE

MULTISCALE DESIGN AND ACHIEVES MODEST IMPROVEMENT

TABLE VII
MODEL EFFICIENCY ANALYSIS WITH SOTA SR MODELS.

THE BEST PERFORMANCE IS SHOWN IN BOLD

performance, we set C = 64 in our final EDiffSR. Moreover,
we conducted three experiments to assess the impact of
multiscale design in EAB. The results are listed in Table VI.
From the table, we can see that the multiscale design brings
a modest improvement in terms of FID.

3) Effectiveness of Conditional Prior Enhancement: To fur-
ther illustrate the capability of fCPEM in grasping valuable prior
knowledge for accurate SR reconstruction, we provide a visual
comparison in Fig. 12. From this figure, we can see that the
model with fCPEM excels in recovering high-frequency details,
such as edges and boundaries. This observation highlights that

fCPEM indeed boosts the performance of EDiffSR by exploring
an enriched condition with more priors.

4) Model Efficiency: To demonstrate the efficiency of
EDiffSR, we conducted a comparison of parameters and infer-
ence times, as presented in Table VII. The results indicate that
EDiffSR is far more lightweight compared with the existing
DPM-based SR models. For instance, when compared with
IRSDE, EDiffSR achieves an impressive reduction of nearly
80% in model parameters (26.79M versus 137.15M) while
delivering superior performance in both FID (30.83 versus
32.42) and PSNR (27.75 versus 27.46 dB). Furthermore,
EDiffSR exhibits faster inference compared with the existing
DPM-based models. When compared with SR3, EDiffSR is
7× faster (19.26 versus 137.61 s) in the diffusion sampling
process, making it more practical for real-world applications.

VI. CONCLUSION

In this article, we devise an EDiffSR to generate
perceptual-pleasant SR results of RSIs. The proposed EANet
shows superior performance against vanilla UNet in noise
prediction and is more lightweight. In particular, rather than
employing the interpolated condition, a CPEM is designed to
explore the potential priors from LR input, which significantly
boosts the reconstruction performance. Extensive quantita-
tive and qualitative evaluation on various remote-sensing
datasets demonstrated that our EDiffSR outperforms SOTA
regression-based, GAN-based, and diffusion-based SR meth-
ods.

Nevertheless, our EDiffSR does exhibit some shortcomings.
First, the sampling process of the diffusion model consumes
massive computational costs, which hinders its real-time
application. Second, EDiffSR does not consider the multiple
degradations involved in RSIs, resulting in limited adaptability
to real-world scenes. Therefore, more efforts should be paid
to speed up the sampling process of the diffusion model in
the future direction. Moreover, we consider extending our
EDiffSR to blind SR issues, thus improving its generalization
in real-world scenarios.
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