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A B S T R A C T

Spectral super-resolution (sSR) is a very important technique to obtain hyperspectral images from only RGB
images, which can effectively overcome the high acquisition cost and low spatial resolution of hyperspectral
imaging. From linear interpolation to sparse recovery, spectral super-resolution have gained rapid development.
In the past five years, as deep learning has taken off in various computer vision tasks, spectral super-resolution
algorithms based on deep learning have also exploded. From residual learning to physical modeling, deep
learning-based models used in spectral super-resolution is multifarious. This paper has collected almost all
deep learning-based sSR algorithms and reviewed them according to their main contributions, involving
network architecture, feature extraction, and physical modeling. This paper proposed a benchmark about
deep learning-based spectral super-resolution algorithms: https://github.com/JiangHe96/DL4sSR, and besides
spectral recovery, their potential in colorization and spectral compressive imaging is also systematically
discussed. Furthermore, we presented our views about challenges and possible further trends of deep learning-
based sSR. Light-weight model architecture with generalization is crucial to in-camera processing. Model
robustness should be considered carefully to manage data with various degradation. Finally, multi-task sSR
meets the multiple needs of humans and meanwhile achieves inter-task mutual improvement, including
low-level with low-level, low-level with high-level, and data reconstruction with parameter inversion.
. Introduction

Hyperspectral (HS) imaging is famous for its satisfactory spectral
esolution, which captures more physical radiation characteristics of
bjects. Unlike multispectral (MS) or RGB images, each pixel of HS im-
ges contains continuous spectra, which has attracted much attention
n several fields, such as food safe [1,2], agriculture monitoring [3–
], geological exploration [6–8], environmental monitoring [9–11],
edical diagnosis [12,13], and remote sensing [14–16]. Involved both

ich spatial and spectral information in one data cube, HS images
re good data sources for many further applications, including image
egmentation [17], object recognition [18,19], trajectory tracking [20],
etection [21–23].

However, due to the unique imaging process and finer radiation
apture, HS images always suffer from complex noises, high acquisition
osts, low signal-to-noise ratios, and low spatial resolutions. This dis-
dvantage significantly limits the further development of applications
equiring high resolutions in spatial and spectral domains. In past
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years, many researchers utilized fusion-based methods to obtain high-
resolution HS images to integrate the spatial details in MS images
with finer spectra in HS images [24–29]. In practice, however, the
corresponding MS–HS image pairs are hardly available. There are three
typical difficulties in these methods. (1) High cost of HS images. Most
HS images are for commercial use and not available for free. (2) Com-
plex pre-preparation for HS images. Pre-processing HS images includes
radiometric calibration, atmospheric correction, geometric correction,
and denoising, where HS denoising is very complex because of the
multi-type noise.

Generating HS images directly from MS or RGB images is an af-
fordable way inspired by computational imaging techniques [30]. The
image formation of RGB or MS sensors is defined as

𝑀(𝑤, ℎ) = ∫𝛬
𝜙(𝜆)𝐺(𝑤, ℎ, 𝜆)𝑑𝜆 (1)

where 𝑀(𝑤, ℎ) is the observed MS or RGB spectra and 𝐺(𝑤, ℎ, 𝜆) is the
ground truth corresponding to the point (𝑤, ℎ) at the wavelength of 𝜆.
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𝜙(𝜆) denotes the spectral response of sensors at the wavelength of 𝜆.
𝛬 represents the whole receptive spectrum of sensors. In other words,
the observed channels are integrations over the receptive spectrum 𝛬.
n discrete settings, it is equal to

(𝑤, ℎ) =
𝐶
∑

𝑖=1
𝜙(𝜆̄𝑖)𝐺(𝑤, ℎ, 𝜆̄𝑖) (2)

here 𝜆̄𝑖 is the sampled wavelengths. 𝐶 denotes the hyperspectral
hannel number. Eq. (2) can be rewritten in tensor form as

= 𝑯𝛷 (3)

here 𝑴 ∈ R𝑊 ×𝐻×𝑐 is a 𝑐-band MS image with the size of 𝑊 ×𝐻 . 𝑯 ∈
𝑊 ×𝐻×𝐶 is the corresponding HS image with 𝐶 channels. 𝛷 ∈ R𝐶×𝑐

enotes the spectral response functions (SRFs) of MS or RGB cameras.
he early attempts are optimizing linear models to achieve spectral
uper-resolution [31], such as principal component analysis [32] and
arhunen–Loève transformation [33]. These methods aim at searching

or a perfect linear combination 𝑝𝑗 that represents each hyperspectral
ixel through k basis functions 𝑣𝑗

≈ 𝑣0 +
𝑘
∑

𝑗=1
𝑣𝑗𝑝𝑗 (4)

In 2008, Parmar et al. [34] first employ sparse recovery to enhance
he band number of RGB images. They represent HS images with sparse
epresentation:

= 𝑻𝑫 (5)

here 𝑫 ∈ R𝑘×𝐶 is the complete sparse HS dictionary that could
epresent all HS pixels and 𝑻 ∈ R𝑊 ×𝐻×𝑘 denotes the transform basis.
he goal of sparse recovery-based super-resolution is to extract the
erfect 𝑫̂ from a set of HS images:

̂ = argmin
𝑫

‖𝑴 −𝛷𝑻𝑫‖2 + 𝜇 ‖𝐷‖1 (6)

here the 𝓁1-norm of 𝑫 is the regularizer and 𝜇 is a parameter related
o data fidelity.

Then, Nguyen et al. [35] proposed a hyperspectral data set to
ecover HS images by training strategy, and learning-based spectral
uper-resolution methods have sprung up since 2014 [36–40]. Robles-
elly [36] leveraged material appearance information to better capture

eatures in the training set. Arad et al. [37] used K-means Singular
alue Decomposition to extract spectral dictionary. Wu et al. [39]

ransferred their spatial-super-resolution algorithm and enhanced dic-
ionary learning.

Instead of considering the physical imaging process, another cat-
gory of methods directly mapping MS images to the HS domain,
specially after deep learning becomes more and more popular [41–
8]. The goal of deep learning-based methods is

= 𝑓 (𝑴 , 𝜃) (7)

̂ = argmin
𝜃

‖𝑓 (𝑴 , 𝜃) −𝑯‖𝑟 (8)

here ‖∙‖𝑟 denotes the 𝓁𝑟-norm loss function, usually 𝓁1 and 𝓁2; 𝜃
epresents the weight parameters of networks. Eq. (8) is the objective
unction of deep learning-based spectral super-resolution. The goal of
eep learning is to find the optimal parameters that can recover the
deal hyperspectral images.

Deep learning can date back to 1958, Rosenblatt et al. [89] pro-
osed perceptron algorithm, which started the first wave of neural net-
ork learning. In 1986, Rumelhart and Hinton [90] introduced back-
ropagating into multi-layer perceptron (MLP) to optimize weights. In
989, LeCun et al. [91] designed a convolution-based neural network,
hich is the rudiment of convolution neural networks. Compared with
LP, CNN is famous for its focus on local window, which is more

uitable for imaging processing. Thus, in spectral super-resolution,
2

except CNN, there is few other deep learning-based methods. The early
deep learning-based work is DenseUnet proposed by Galliani et al. [42].
Xiong et al. [44] improved a very deep spatial super-resolution residual
CNN to enhance the spectral resolution of RGB images. Rangnekar
et al. [43] trained an Unet architecture followed by a 31-kernel 1 × 1
convolution layer with Generative Adversarial Networks (GAN) to re-
cover hyperspectral images. Han et al. [48] clustered the RGB images
using K-means and employed different backpropagation neural net-
works (BPNNs) to recover different spectral classes. Fu et al. [46]
combined spectral responses simulation and spectral recovery with
spatial–spectral CNNs. Later, Koundinya et al. [49] compared 2D and
3D convolutions in spectral reconstruction. Wang et al. [56] proposed
an optimization-inspired model with spatial–spectral convolutions to
reconstruct hyperspectral images. Li et al. [60] utilized an adaptive
weighted attention network with dual residual attention blocks to
explicitly model interdependencies between channels in 2020. Martínez
et al. [61] pretrained the model with the degradation loss using spectral
responses and transferred the model into a new spectral data set. Deep
learning-based methods have been proved to achieve great advances
over traditional sparse recovery in spectral super-resolution. However,
because of the rapid development of deep learning, the networks
proposed by researchers are massive. A word cloud indicating the most
ranked words appearing in the titles of 112 spectral super-resolution
papers in the past twenty years is shown in Fig. 1. Therefore, it is
appropriate to review the deep learning-based spectral super-resolution
methods according to their core concepts.

In this paper, we reviewed 42 papers about spectral super-resolution
based on deep learning from 2017 to 2022. Following the development
of these methods, their main contributions can be divided into ten
strategies as shown in Fig. 2. (i) Unet-like. Unet [92] is originally
proposed in image segmentation. For its fast running and good perfor-
mance, many early spectral super-resolution methods utilized Unet as
the basic network. (ii) Residual learning. Model depth has been proved
to be greatly important for performance in deep learning. However,
vanishing or exploding gradients hamper the training convergence.
Residual learning [93] is an efficient strategy to build deeper net-
work, which attracted many works about spectral super-resolution.
(iii) Generative adversarial network (GAN). GAN [94] is proposed to
improve the training process by alternative optimizing generator and
discriminator. Some researchers regarded spectral super-resolution as
image generation and employed GAN to solve it. (iv) Multi-feature
fusion. Multiple features at shallow or deep stages contain different
information that both make great sense to model performance. Densely
connection [95] is a common way to reuse these features. Moreover,
the bottlenecks keep the low computational complexity. (v) 2D–3D.
Classical convolutions in deep learning are usually 2D. Considering
that spatial–spectral features in hyperspectral images are 3D, some
works combined 2D convolutions with 3D convolutions in spectral
super-resolution. (vi) Attention. Inspired by squeeze-and-excitation net-
works in classification, attentions are widely used in various types of
CNNs to improve the spectral recovery. (vii) Degradation simulation. In
2018, Fu et al. [46] designed a spectral super-resolution framework
containing spectral degradation and recovery though a convolution-
based degradation simulation. Based on this work, there are many
researches improving the degradation simulation with degradation loss.
(viii) Group recovery. Realizing the difference among spectral channels
or different objectives, many works grouped the input features in
spatial or spectral domains and utilized different models to enhance
their spectral resolutions. (ix) Model-embedded learning. Data-driven
modeling for deep learning is a double-edged sword. On the one hand,
users need not to learn how the model works and generate results
directly by feeding data into the trained model. On the other hand,
deep learning-based methods are always blamed for its lack of physical
interpretability. To open the black box of deep learning, some works
utilized physical models to help CNN-based modeling. (x) Joint super-

resolution. Besides spectral super-resolution, some researchers jointed
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Fig. 1. The word cloud about spectral super-resolution.
Fig. 2. Categorization of spectral super-resolution based on deep learning.
the spectral super-resolution with spatial super-resolution and solved it
in an end-to-end network. It is observed that deep learning-based sSR
has been developed rapidly in network architecture, feature extraction,
and physical modeling.

The motivation of this work is as follows. Firstly, as far as we know,
there is no work completely reviews the deep learning-based technolo-
gies in spectral super-resolution. Secondly, spectral super-resolution
methods could be deployed into many scenarios, including image col-
orization, spectral recovery, and spectral compressive imaging, while
existing works only address one specific task. [96] is a latest review
about spectral recovery, while it only discussed spectral recovery and
did not proposed a benchmark. In this paper, we propose a comprehen-
sive review about deep learning-based methods and compare the model
performance in three applications.

This article is structured as following:

• Section 2 reviews the deep learning-based spectral super-
resolution methods.

• Section 3 compares typical methods in three applications.
• Trends and challenges of deep learning in spectral super-

resolution are discussed in Section 4. Moreover, some thoughts
on future directions are also given.

• A summary of this article is made in Section 5.
3

2. Method review

Researchers have been studying deep learning-based sSR methods
for almost ten years. With the rapid development of deep learning and
the more abundant hyperspectral data sets, there have been various
works address the deep learning-based sSR. This article mainly surveys
42 works from 2017, as shown in Table 1.

As described in Section 1, The mentioned ten core ideas involve
Network architecture, Feature extraction, and Physical modeling. Con-
cretely, network architecture is significant for deep learning-based
methods, a suitable architecture leads to a better performance, and the
common architectures include Unet-like, Residual learning, and GAN.
Secondly, the most important processing of spectral super-resolution
is the spatial–spectral feature extraction, and fully mining the spatial–
spectral information in the image is beneficial to the recovery of
hyperspectral image. Multi-feature fusion, 2D–3D, and Attention are all
effective means of spatial–spectral feature extraction. Finally, consider-
ing physical imaging model in algorithms is also a new trend in spectral
super-resolution. Many works have tried to using physical modeling in
their CNNs, and the main ideas include Degradation simulation, Group
recovery, and Model-embedded learning. Note that, some works may
consist of multiple strategies. To keep their original contributions, this
review does not divide them into separate categories.
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Table 1
An overview of spectral super-resolution methods based on deep learning.

Methods Introduction Strategies

2017alvarez [41] Unet without batch normalizations trained by PatchGAN Unet-like; GAN

2017galliani [42] densely connected Unet Unet-like; Multi-feature fusion

2017rangnekar [43] Unet followed by a 1 × 1 convolution trained by GAN Unet-like; GAN

2017xiong [44] very deep residual CNN with one global skip connection Residual learning

2018can [45] moderately deep residual CNN with 9 layers Residual learning

2018fu [46] spatial–spectral CNN with SRF simulation Degradation simulation

2018han [47] deep CNN with middle global skip connection Residual learning

2018han2 [48] clustering using K-means before multiple BPNNs Group recovery

2018koundinya [49] 5-layer CNN with 2D convolutions and 3D convolutions 2D–3D

2018shi [50] densely connected CNN with path-widening fusion Multi-feature fusion

2018stiebel [51] Unet considered about non-ideal imaging Unet-like

2018yan [52] densely connected Unet with multi-scale convolutions Unet-like; Multi-feature fusion

2019gewali [53] pixel-by-pixel reconstruction using a deep residual CNN Residual learning; Group recovery

2019kaya [54] moderately deep residual CNN with SRF and class prior Residual learning; Degradation simulation

2019lore [55] GAN-trained Unet to refine spectral super-resolution Unet-like; GAN

2019wang [56] optimization-inspired model with spatial–spectral convolutions Model-embedded learning

2020banerjee [57] Unet with XResnet Unet-like

2020fubara [58] learn SRF to achieve supervised and unsupervised spectral
recovery

Degradation simulation

2020li [59] 2D and 3D residual attentions with structure tensor constraints 2D–3D; Attention

2020li2 [60] adaptive weighted attention network with dual residual
attention blocks

Attention

2020martinez [61] transfer the pretrained model with degradation loss Degradation simulation

2020mei [62] joint a spatial super-resolution network with a spectral
super-resolution network

Joint super-resolution

2020nathan [63] attention-based network with a dense branch and a Unet-like
branch in parallel

Unet-like; Multi-feature fusion; Attention

2020peng [64] no-pooling residual channel attention and multi-depth features
fusion

Multi-feature fusion; Attention

2020stiebel [65] combine signal formation and CNN with metameric loss Model-embedded learning

2020wang [66] deep non-local unrolling network Model-embedded learning

2020wei [67] one-shot CNN with the help of spectral unmixing Model-embedded learning

2020yan [68] Unet with category and coordinate information Unet-like

2020zhang [69] deep CNN with multi-path function-mixture blocks Multi-feature fusion

2020zhao [70] densely connected CNNs with PixelUnShuffle to extract
multi-scale features

Residual learning; Multi-feature fusion

2021he [71] end-to-end deep-unrolling CNN with the SRF guide Group recovery; Model-embedded learning

2021hang [72] group spectral bands with correlation and reconstruct using
multiple residual CNNs

Residual learning; Group recovery

2021li [73] 2D–3D convolution-based CNN with second-order channel
attention and structure tensor attention

2D–3D; Attention

2021li2 [74] dual channel attention networks with degradation loss Attention; Degradation simulation

2021sun [75] RGB synthesis with learnable Infrared-cut filter Degradation simulation

2021zheng [76] CNN with spatial and spectral residual attentions Attention

2021zhu [77] end-to-end CNN by unfolding amended gradient descent progress Model-embedded learning

2021zhu2 [78] degradation model-aware network trained by GAN to achieve
unsupervised spectral super-resolution

GAN; Degradation simulation

2022chen [79] semi-supervised spectral attention-based network with spectral
degradation

Attention; Degradation simulation

2022han [80] superpixel clustering before multi-branch BPNNs Group recovery

2022he [81] universal optimization-driven CNN combining spatial–spectral
fusion with spectral super-resolution

Joint super-resolution; Model-embedded learning

2022li [82] CNN with hybrid residual attentions and RGB structure
information

Attention

2022ma [83] deep spatial–spectral feature interaction network Joint super-resolution

2022mei [84] CNN with spatial–spectral convolutions and band-by-band
reconstruction

Group recovery

2022ma2[85] deep unrolling-based CNN joint spectral and spatial
super-resolutions

Joint super-resolution; Model-embedded learning
4
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Fig. 3. Unet-like architecture.
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.1. Network architecture

.1.1. Unet-like
Unet [92] is firstly proposed in image segmentation and attracted

ide attentions in various tasks. Due to the fast runtime and multi-
cale feature reuse, Unet is the main framework in many early deep
earning-based sSR methods, as shown in Fig. 3. In the early work on
GB images, Rangnekar [43] added a 31 band 1 × 1 convolution layer
fter Unet to increase the channel number. And Alvarez-Gila et al. [41]
eplaced the Batch Normalization layer in Unet. To improve the feature
xtraction in Unet, Galliani et al. [42] employed a Tiramisu-like net-
ork consists of densely connected blocks. Moreover, Yan et al. [52]

ntroduced multi-scale convolutions into the Tiramisu-like network.
Considering about real-world imaging, Stiebel et al. [51] used Unet

o address non-ideal imaging-based sSR. In 2019, Lore et al. [55]
irstly refined the concept of spectral super-resolution, including RGB
o hyperspectral recovery and selected bands to hyperspectral recon-
truction. Moreover, they utilized Unet to discuss different cases. As
ore and more efficient CNN modules have been brought up, various

eature extractions in Unet are proposed. Banerjee et al. [57] improved
he Unet with XResnet [97]. Yan et al. [68] injected the category and
oordinate information into Unet to enhance the feature extraction.

There are three main reasons why researchers used Unet-like ar-
hitecture in sSR. Firstly, with multiple down-and-up samplings, Unet
ould exploit the multi-scale features in images. Secondly, running time
n down-sampled features is significantly reduced. So, the computa-
ional speed is very high. Lastly, shallow features contain great texture
nd structure, and reusing shallow features relieves the information loss
aused by the downsampling.

However, the weakness of Unet is obvious. On the one hand, down-
ampling truly boost the spectral recovery, but on the other, the infor-
ation loss is inevitable. Thus, images generated by Unet-like methods
sually lose some spatial details [71].

.1.2. Residual learning
Network depth makes great sense for model performance in deep

earning. Unfortunately, gradients in deep CNNs would vanish during
he backpropagation. Residual learning [11] is a strategy to build an
dentity mapping from shallow to deep modules without neither extra
arameter nor computation complexity, which is able to address the
anishing gradients in deep CNNs.

Inspired by these motivations, residual learning is a widely used
trategy in spectral super-resolution as shown in Fig. 4. As early as
5

Fig. 4. Residual learning.

017, Xiong et al. [44] firstly improved a very deep spatial super-
esolution residual CNN to enhance the spectral resolution of RGB
mages. Han et al. [47] utilized a global skip connection to enhance
he recovery of high-frequency spectral contents. With global residual
onnections, Can et al. [45] did not build a very deep CNN while
moderately deep CNN with two residual blocks between two 5×5

convolutions. In 2019, Gewali et al. [53] used a deep residual CNN with
1D convolutions to reconstruct hyperspectral images pixel by pixel.
Combining with dense blocks, Zhao et al. [70] extracted multi-scale
features with residual dense blocks to explicitly consider spectral con-
text information. Having realized the difference among spectral bands,
Hang et al. [72] grouped spectral bands with correlation matrixes and
reconstructed them using residual networks respectively.

Although residual learning requires no more parameters or com-
putational complexity, it cannot be directly used in spectral super-
resolution. Because the input channel number and the output channel
number in sSR are different, the element-wise summation is inapplica-
ble. Thus, more convolutions should be employed before summation,
which leads to that the added features are not physically explicable as
residuals in other image enhancements, such as denoising, dehazing,
and deraining.

2.1.3. GAN
Among early works about spectral super-resolution, some methods

regarded sSR as image generation and employed GAN to solve it.
GAN [98] is proposed to improve the training process by alternative
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Fig. 5. Generative adversarial network.

ptimizing generator and discriminator. Given a generator 𝐺(𝑀 ; 𝜃𝑔),
discriminator 𝐷(𝑥; 𝜃𝑑 ), the input distribution 𝑝𝑚𝑠, and the target

yperspectral distribution 𝑝ℎ𝑠, the objective of GAN-based sSR is to play
two-player minimax game, as shown in Fig. 5, with value function
(𝐺,𝐷):

in
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = 𝐸𝑥∼𝑝ℎ𝑠 [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑀∼𝑝𝑚𝑠 [1 −𝐷(𝐺(𝑀))] (9)

As early as in 2019, Alvarez-Gila et al. [41] employed Patch-
AN [99] as the discriminator to train an Unet-like architecture with-
ut Batch Normalization layers to improve the spectral resolution of
GB images. In the same year, Rangnekar et al. [43] trained an Unet
rchitecture followed by a 31 band 1 × 1 convolution layer with GAN
o recover aerial hyperspectral images. Lore et al. [55]used conditional
AN to train CNN and discussed their refined concept of spectral

uper-resolution. After this, there is few sSR methods employing GAN
s training. In 2021, Zhu et al. [78] proposed a degradation model-
ware hyperspectral image generation and utilized GAN to achieve
nsupervised spectral reconstruction.

From the development of GAN-based spectral super-resolution
ethods, we can find that only the works that regarding sSR as image

eneration would employ GAN. Obviously, the disadvantage of GAN is
he unavoidable fake information in the reconstructed images. So, if the
round truth is unavailable in a task, GAN is a good choice to acquire
atural visual performance. However, the spectra recovered by spectral
uper-resolution should be as similar as possible to the observation of
he real hyperspectral sensor. Because, there is physical significance in
pectra, which can reflect the radiation characteristics of the observed
bject.

.2. Feature extraction

.2.1. Multi-feature fusion
The memory and features of convolutional neural networks (CNNs)

re affected as they deepen, compared with shallow CNNs. Although
esidual learning is an acceptable approach to bring shallow features
nto deep layers, the combined features depend on shallow features
hrough identity mapping. In many cases, shallow and deep features
re both greatly important in spectral super-resolution. Thus, dense
onnections [95] for multi-feature fusion is proposed to reuse these
eatures equally, as shown in Fig. 6. Galliani [42] and Yan [52] em-
loyed a Tiramisu-like network embedding dense blocks into Unet to
ddress spectral super-resolution. Shi et al. [50] designed and com-
ared two types of CNNs with residual skips, and then found that
oining dense connections with path-widening fusion could improve
he model performance. Nathan et al. [63] proposed a network with a
6

ense branch and a Unet-like branch in parallel. Peng et al. [64] fused
multi-depth features from stacked residual channel attention blocks to
improve spectral recovery. In 2020, Zhang et al. [69] proposed multi-
path function-mixture blocks to adaptively adjust the learned pixel-wise
spectral mapping.

Multi-feature fusion with dense connections always requires an ex-
tra bottleneck layer to reduce the concatenated features to significantly
boost the computation. If the use of dense blocks is limited, then the
parameters introduced by bottlenecks are negligible. However, when
dense blocks are used repeatedly in the model, the calculated amount
is increased.

2.2.2. 2D–3D
Some researchers suggest that classical 2D convolutions can learn

a nonlinear function, considering the spatial–spectral features in hy-
perspectral images. However, they neglect the deeper inter-channel
or spatial feature correlations among middle layers. Human action
recognition includes a type of convolution that can capture spatiotem-
poral features from videos [100]. Differences between 2D and 3D
convolutions are shown in Fig. 7. Thus, to exploit the spatial–spectral
features in hyperspectral images, 3D convolutions are also used in
spectral super-resolution.

In 2018, Koundinya et al. [49] compared the performance of 2D
and 3D convolutions for spectral reconstructions from RGB images and
presented that 3D CNN is more suitable. Li et al. [59] utilized 2D
and 3D residual attentions with structure tensor constraints to recover
hyperspectral images. Subsequently, Li et al. [73] further explored the
second-order channel attention and structure tensor attention with 2D
and 3D convolutions to improve spectral recovery.

From a complete 3D convolution-based CNN to 2D–3D CNN, 3D
convolutions in spectral super-resolution do not gain remarkable atten-
tion. The latest works only employed 3D convolutions as a branch in
parallel. A serious problem with 3D CNN is the great number of param-
eters in 3D kernels. With 3D convolutions, the models truly reconstruct
more ideal hyperspectral images, but require a considerably longer
time [73]. Embedding 2D CNN with 3D convolutions can alleviate this
problem.

2.2.3. Attention
Since attention mechanisms [101] are proposed in 2017, many

works have realized the difference between features. Especially, Hu
et al. [102] designed squeeze-extraction networks to capture the inter-
band attentions. In spectral super-resolution, attention mechanisms
were introduced in the last three years. The main attentions are divided
into spatial and spectral attentions, as shown in Fig. 8. In addition,
some researchers utilized hybrid attentions by combining the two
attentions.

In 2020, Li et al. [60] utilized an adaptive weighted attention
network with dual residual attention blocks to explicitly model in-
terdependencies between channels. In the same year, they further
improved their residual attentions with structure tensor constraints
and 2D–3D convolutions to recover hyperspectral images [59]. Peng
et al. [64] removed the pooling of residual channel attention blocks and
fused multi-depth features to improve the spectral recovery. Nathan
et al. [63] proposed an attention-based network with a dense branch
and a Unet-like branch in parallel. In 2021, Li et al. [73] explored a
second-order channel attention based on their previous 2D–3D struc-
ture tensor attention. Gu et al. [74] combined 2D and 3D branches with
different channel attentions and used spectral responses to constrain
model optimization. Moreover, Zheng et al. [76] proposed a CNN con-
sisting of different spatial–spectral branches with spatial and spectral
residual attentions. In 2022, Li et al. [82] improved hybrid residual at-
tentions again and injected the structure information of RGB input into
intermediate features. Chen et al. [79] utilized spectral attention-based
networks to achieve semi-supervised spectral super-resolution.

The attention mechanism is an effective strategy to explore the
relationships within images. It guides the model to focus on interest-

ing features. Spatial attentions capture the spatial difference, which
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Fig. 6. Multi-feature fusion.
Fig. 7. 2D convolutions and 3D convolutions.
Fig. 8. Spatial attentions and spectral attentions.
may represent the class of the observed objects. Moreover, spectral
attentions ensure that the models can distinguish between bands with
different radiation characteristics. The classical attentions require few
extra parameters, but require more floating-point calculations because
of the element-wise product. Especially, more works prefer using hybrid
attentions, thereby further increasing computational time.

2.3. Physical modeling

2.3.1. Degradation simulation
Similar to the classical image reconstruction, spectral

super-resolution maps information from RGB domains to hyperspectral
domains, exhibiting an ill-posed inverse problem. Thus, RGB images
degraded from the recovered hyperspectral images should be consis-
tent with the original RGB images because only one fixed type of
degradation occurs during the imaging when using a fixed sensor.
Many researchers have focused on appropriately simulating the ideal
degradation in their works to introduce the consistency constraints into
spectral super-resolution. They can be divided into two groups, includ-
ing simulation for better input and simulation for better constraints, as
shown in Fig. 9. Works using simulation for better input suggest that the
quality of the reconstructed images is sensitive to the spectral response
functions used to generate the input image [103]. Other studies focused
more on enhancing the constraints of the output image, such as spectral
degradation loss functions.
7

As early as 2018, Fu et al. [46] simulated several spectral re-
sponses and achieved spectral recovery with spatial–spectral CNNs.
Kaya et al. [54] designed two networks to learn spectral responses
and classes and discussed the advantages and disadvantages of different
types of spectral super-resolution frameworks. Martínez et al. [61] pre-
trained the model with the degradation loss using spectral responses.
Sun et al. [75] simulated an infrared-cut filter to achieve learnable RGB
synthesis. Li et al. [74] used spectral responses to optimize their 2D–
3D attention-based model. With degradation simulation, some works
attempted to achieve unsupervised spectral super-resolution. In 2020,
Fubara et al. [58] used the learned spectral basis functions as a guide to
achieve supervised and unsupervised spectral recovery. Zhu et al. [78]
proposed a degradation model-aware hyperspectral image generation
and utilized generative adversarial training to achieve unsupervised
spectral reconstruction. Chen et al. [79] utilized physical spectral
degradation to achieve semi-supervised spectral super-resolution.

Degradation simulation can effectively improve the constrains of the
recovered hyperspectral images, especially when the specific spectral
degradation matrices are known. The problem is that errors of degrada-
tion simulation further affect the accuracy of spectral super-resolution.
Moreover, improving the efficiency and accuracy of degradation simu-
lation is important.

2.3.2. Group recovery
Local and nonlocal similarity in hyperspectral images is very useful

to improve the reconstruction in several imaging processes, such as de-
noising [104], spatial super-resolution [105], and image fusion [106].



Information Fusion 97 (2023) 101812J. He et al.
Fig. 9. Degradation simulation.
Fig. 10. Two group recovery strategies dealing with spatial and spectral domains.
Inspired by these works, the two types of strategies in introducing local
and nonlocal similarities into spectral super-resolution are spatial group
recovery and spectral group recovery, as shown in Fig. 10.

In the early work utilizing self-similarity in spectral
super-resolution, Han et al. [48] clustered the input RGB image using
K-means and employed different backpropagation neural networks to
recover different spectral classes. In 2022, they [80] further clustered
RGB images and used multi-branch backpropagation neural networks
to generate hyperspectral images. These works are based on spatial
group recovery. For spectral similarity, He et al. [71] grouped spectral
bands using spectral responses and applied deep-unrolling networks to
recover them. Moreover, Hang et al. [72] grouped spectral bands with
correlation matrixes and reconstructed them using residual networks.

However, some works are contrary to this idea. They believe that
information in different bands or pixels would interfere with each
other. Therefore, they achieved the spectral super-resolution of each
pixel or band separately. Gewali et al. [53] used a deep residual CNN
with 1D convolutions and reconstructed hyperspectral images pixel-by-
pixel. Mei et al. [84] reconstructed hyperspectral images band by band
and then optimized them with spatial–spectral convolutions.

Group recovery, whether in spatial domains or spectral domains,
could truly inject more physical prior for networks. However, the
following question is raised: how many groups do we need? The two
extremes in group recovery include the common sSR methods, which do
not group images whether in spatial or spectral domains, and the group
number is the minimum 1; the other method proposed by Gewali [53]
and Mei [84] grouped images pixel by pixel or band by band, where
the group number is the maximum. Some works suggested that the
improvement of group recovery depends remarkably on the group
numbers [72]. They also stated that the most suitable group numbers
for different sensors are different. Thus, enabling deep learning-based
models to determine group number adaptively is an urgent problem to
be solved for group recovery-based algorithms.

2.3.3. Model-embedded learning
Deep learning has truly gained considerable attention given its

strong ability to learn complex nonlinear mapping implicitly. However,
8

the black box of deep learning lacks sufficient physical interpretability
and causes difficulty to provide a unified framework to deal with
various tasks. Physical model-based algorithms, such as total variation,
Bayesian maximum a posterior, and other optimization algorithm, are
easily deployed into different tasks because they are modeled based on
specific physical processes. Since 2017, Sun et al. [107] Sun built a
bridge that combines the optimization algorithm with deep learning in
image restoration. Many works that use the physical model to build
a network structure have been conducted [108,109]. Fig. 11 shows
the idea of combining the physical model with deep learning in spec-
tral super-resolution. The common approach might be following the
data flow in optimization algorithms and building deep learning-based
networks; this method is also called deep unrolling [110–116].

In 2019, Wang et al. [56] proposed an optimization-inspired model
with spatial–spectral convolutions to reconstruct hyperspectral images.
In the second year, they designed a non-local unrolling network for
computational spectral imaging [66]. In 2021, He et al. [71] unrolled
a half-quadratic splitting-based method and employed parametric self-
learning to achieve spectral recovery. At the same year, Zhu et al. [77]
proposed an end-to-end CNN by unfolding amended gradient descent
progress. Recently, Ma et al. [85] unfolded an alternative direction
multiplier method to achieve joint spectral and spatial super-resolution.
Wei et al. [67] combined spectral unmixing with CNN to increase the
spectral channels of RGB images. Stiebel et al. [65] assumed that the
reconstructed spectra should involve two solutions based on physical
model derivation and used CNN to learn one of them.

Model-embedded learning brings the known physical prior into deep
learning, which can guide the model to accurately learn the corre-
sponding process to the physical model. Meanwhile, model-embedded
learning maintains the end-to-end manner and the data-driven train-
ing of deep learning. This advantage alleviates the problem that the
traditional physical model requires considerable manual adjustment.
However, existing model-embedded learning-based methods are di-
verse, and no work has proven which type of these methods is the most
suitable to spectral super-resolution. Moreover, frequent arithmetical
calculations lead to more floating-point operations and longer runtime
of model-embedded learning-based deep learning sSR, even with few
parameters.
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Fig. 11. Model-embedded learning.
Fig. 12. schematic for three applications of spectral super-resolution. HSI denotes hyperspectral images.
2.4. Joint super-resolution

In recent years, many works not only achieve spectral super-
resolution but also deal with spatial super-resolution in one model,
namely, joint super-resolution. The difference between spectral super-
resolution and joint super-resolution is whether it increases the spatial
resolution simultaneously. The frameworks available to address joint
super-resolution include two types. One approach is solving these prob-
lems with different models successively, and the other is considering
spatial degradation into spectral super-resolution.

The earliest work in joint super-resolution is proposed by Mei
et al. [62], where spectral super-resolution networks were stacked
with spatial super-resolution networks to simultaneously enhance spa-
tial and spectral resolution of RGB images. In 2022, He et al. [81]
proposed a universal CNN by unfolding an optimization-based algo-
rithm considering spectral degradation and spatial degradation. Ma
et al. [83] proposed a deep spatial–spectral feature interaction network
to generate high-resolution hyperspectral images. In the same year, Ma
et al. [85] further unfolded an alternative direction multiplier method
to improve the spatial resolution as well as the spectral resolution,
which considers the observation models of the spatial super-resolution
and spectral super-resolution.

3. Applications and comparisons

Spectral super-resolution can effectively enhance the spectral infor-
mation of the observed objects to allow individuals to explore the world
from another perspective. The sSR-derived applications are denoted
to provide more information about the radiation characteristics of
captured images. The normal application is spectral recovery, which re-
covers hyperspectral information from low spectral-resolution images.
9

In this review, we further discuss the potential of deep learning-based
sSR algorithms in the two other applications, i.e., image coloriza-
tion and spectral compressive imaging, which can intuitively demon-
strate the importance of spectral super-resolution. Fig. 12 illustrates the
difference between three applications.

Spectral recovery builds a bridge between RGB images and hyper-
spectral images [117]. Hyperspectral images that involve fine spec-
tral radiance properties with numerous bands always suffer from low
spatial resolution and high cost of acquisition. RGB and MS images
are highly favored for their rapid imaging, high spatial resolution,
and ubiquitous data sources. The difference between MS and RGB
images are their wavelength range. RGB images only cover visible
spectrum with three bands, whereas MS images usually cover a wider
spectral range with more spectral bands. Meanwhile, compared with
hyperspectral images, no matter RGB and MS images still suffer from
low spectral resolution. Spectral recovery is an application of spec-
tral super-resolution that can directly reconstruct hyperspectral images
from available RGB images. As shown in Fig. 12(b), we would discuss
spectral recovery based on RGB-to-hyperspectral mapping of spectral
super-resolution, which is a widely accepted benchmark proposed by
New Trends in Image Restoration and Enhancement (NTIRE) [118–120].

Image colorization is performed to reconstruct a plausible color ver-
sion of the observed grayscale photograph to transform black-and-white
images into RGB images [121–129]. The given grayscale images only
consist of one band in the spectral domain, whereas the reconstructed
RGB images have three bands, as shown in Fig. 12(a). Thus, image
colorization is also a one-to-three mapping of spectral super-resolution.

Spectral compressive imaging aims at acquiring large volumes of
spatial–spectral information of the photographed subject from a set
of under-sampled observations, which may result from the restrictions
on acquisition time and power consumption in the actual imaging
procedure [130–139]. The coded aperture snapshot spectral imaging
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Fig. 13. A schematic of CASSI.
Table 2
Implementation details of the comparison methods in spectral recovery.

Methods Paper ID Learning rate Hyperparameter Parameter FLOPs/G Runtime/s

DenseUnet [42] 2017galliani 0.002 DenseB4; L4; F16 1360.1K 30.158 0.0249
CanNet [45] 2018can 0.0005 ResB2 163.0K 39.675 0.0136
HSCNN+ [50] 2018shi 0.0002 B38; F16 1642.0K 399.672 0.0450
sRCNN [53] 2019gewali 0.0001 L16; F128; K3 789.3K 5955.898 0.0891
AWAN [60] 2020li2 0.0001 M8; DRAB8; F200 34893.9K 4254.316 0.0400
FMNet [69] 2020zhang 0.0001 FMB4; P3; N3; M2; F64 12603.9K 2878.594 0.0333
HRNet [70] 2020zhao 0.0001 F64 63213.9K 610.188 0.0271
HSRnet [71] 2021he 0.0001 OS8 713.4K 158.698 0.0297
HSACS [73] 2021li 0.00005 2DResB16; 3DResB4 19707.7K 4894.209 1.5290
GDNet [77] 2021zhu 0.001 S9 785.664K 191.540 0.0247
SSDCN [79] 2022chen 0.01 B4; F128 415.231K 97.085 0.0157
(CASSI) system is most frequently used. Fig. 13 shows a schematic of
CASSI [132]. In CASSI, a coded aperture creates spatial modulation
by its transmission function, and a dispersive prism creates spectral
shear along a spatial dimension according to the wavelength-dependent
dispersion function. Finally, the 2D compressive image is generated
by integrating the coded information. As shown in Fig. 12(c), spectral
compressive imaging attempts to reconstruct the ideal hyperspectral
images from the coded 2D compressive image; it is a one-to-many
mapping of spectral super-resolution.

Most importantly, an end-to-end benchmark under the same train-
ing and testing frameworks is proposed in this paper.1 All methods
are compared without any other help. To the best of our knowledge,
image colorization was initially presented as a one-to-three mapping
for coloring cartoon pictures. Therefore, most image colorization meth-
ods require weak supervision or class information as guide. As for
spectral compression imaging, a one-to-many mapping, the coded aper-
ture is always considered as a prior. However, the selected spectral
super-resolution methods do not depend on any other assistance in
an end-to-end manner. They can directly increase the spectral band
number given a low-spectral-resolution image as input. In this case, we
did not compare with a special task method, which considers an extra
prior.

3.1. Quantitative metrics

The commonly used quantitative metrics include correlation coef-
ficient, mean relative absolute errors, root mean square error, mean
peak signal-to-noise ratio, mean structural similarity, and spectral angle
mapper.

Correlation coefficient (CC) ranges 0 to 1, and the larger CC presents
the better performance. The formula is as follows:

𝐶𝐶 =
∑𝑁

𝑖=1
(

𝑋𝑖 − 𝜇
) (

𝑋̂𝑖 − 𝜇̂
)

√

∑𝑁
𝑖=1

(

𝑋𝑖 − 𝜇
)2 ∑𝑁

𝑖=1
(

𝑋̂𝑖 − 𝜇̂
)2

(10)

1 Benchmark can be found at: https://github.com/JiangHe96/DL4sSR.
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where 𝑁 denotes the pixel number; 𝑋 and 𝑋̂ denote the reconstructed
images and the ground truth; 𝜇 and 𝜇̂ represent the mean of 𝑋 and 𝑋̂.

Mean relative absolute errors (MRAE) is non-negative, and the
closer to 0 indicates the higher fidelity. The formula is shown in below:

𝑀𝑅𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

|

|

|

𝑋𝑖 − 𝑋̂𝑖
|

|

|

𝑋̂𝑖

⎞

⎟

⎟

⎠

(11)

Root mean square error (RMSE) is also non-negative, and the closer to
0 indicates the higher fidelity. RMSE can be defined as follows:

𝑅𝑀𝑆𝐸 = 1
𝑁

√

√

√

√

𝑁
∑

𝑖=1

(

𝑋𝑖 − 𝑋̂𝑖
)

(12)

Mean peak signal-to-noise ratio (mPSNR) is positive, and the higher
indicates the less distortion, which is calculated as:

𝑚𝑃𝑆𝑁𝑅 = 1
𝐶

𝐶
∑

𝑗=1
20 ⋅ log10

(

𝑀𝐴𝑋𝐼
𝑅𝑀𝑆𝐸𝑗

)

(13)

where 𝐶 denotes the channel number; 𝑀𝐴𝑋𝐼 is the maximum of the
image. In this paper, because all images are normalized, 𝑀𝐴𝑋𝐼 is set
to be 1.

Structural similarity (SSIM) [140] ranges 0 to 1, and the larger
mSSIM presents the higher fidelity. The formula is shown in below:

𝑆𝑆𝐼𝑀 =

(

2𝜇𝜇̂ + 𝐶1
) (

2𝜎𝑋𝑋̂ + 𝐶2
)

(

𝜇2 + 𝜇̂2 + 𝐶1
) (

𝜎2 + 𝜎̂2 + 𝐶2
) (14)

where 𝜇 and 𝜇̂ denote the mean of 𝑋 and 𝑋̂; 𝜎 and 𝜎̂ are the standard
deviation of 𝑋 and 𝑋̂; 𝜎𝑋𝑋̂ is the covariance; 𝐶1 and 𝐶2 are two
constants and equal to 0.01 ⋅𝑀𝐴𝑋𝐼

2 and 0.03 ⋅𝑀𝐴𝑋𝐼
2, respectively.

Noted that, SSIM is calculated on local windows of the image. We
usually use mean SSIM (mSSIM) to evaluate the overall image quality:

𝑚𝑆𝑆𝐼𝑀 = 1
𝐾

𝐾
∑

𝑗=1
𝑆𝑆𝐼𝑀

(

𝑥𝑗 , 𝑥̂𝑗
)

(15)

where 𝐾 is the local window number of the image; 𝑥𝑗 and 𝑥̂𝑗 are the
image blocks at the 𝑗th local window.

https://github.com/JiangHe96/DL4sSR
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Table 3
Properties of five public hyperspectral data sets including indoor and outdoor scenes.

Sensor Wavelength (nm) Channels Size Amount

ARAD_1K Specim IQ 400–700 31 512 × 512 1000
CAVE Apogee Alta U260 400–700 31 512 × 512 32
ICVL Specim PS Kappa DX4 400–700 31 1392 × 1300 203
Harvard Nuance FX 420–720 31 1392 × 1040 50
NUS PFD-CL-65-V10E 400–700 31 1312 × 1924 64
Table 4
Properties of ten public aerial or satellite hyperspectral data sets.

Sensor Wavelength(nm) Channels Size

DC Mall Hydice 400–2400 191 1208 × 307
Urban Hydice 400–700 210 307 × 307
Pavia U ROSIS 430–860 103 610 × 340
Pavia C ROSIS 430–860 102 1096 × 715
Indian Pines AVIRIS 400–2500 220 145 × 145
Cuprite AVIRIS 370–2480 224 512 × 614
DFC2018 CASI 380–1050 48 2384 × 601
KSC AVIRIS 400–2500 224 512 × 614
Chikusei HH-VNIR-C 363–1018 128 2517 × 2335
Xiong’an Unknown 400–1000 250 3750 × 1580
Spectral angle mapper (SAM) [141] is non-negative, and the closer
o 0 indicates the higher spectral consistency. SAM is defined as:

𝐴𝑀 = arccos
(

< 𝑧, 𝑧̂ >
‖𝑧‖2 ⋅ ‖𝑧̂‖2

)

(16)

here 𝑧 and 𝑧̂ denote the spectral vectors of 𝑋 and 𝑋̂ on the same
ocation; ⟨∙⟩ denotes the dot product; and ‖∙‖2 represents the 𝐿2 norm.

3.2. Public hyperspectral data sets

For learning-based methods, training data with ground truth are
greatly important. In spectral super-resolution, hyperspectral images
are always unavailable. Thus, many works have attempted to propose
reliable hyperspectral data sets. Table 3 reports the indoor/outdoor
hyperspectral data sets. The indoor/outdoor hyperspectral data sets
always cover the wavelength range from 400 nm to 700 nm. The
hyperspectral images all have 31 channels corresponding to a RGB
image. Among them, ARAD_1K contains the most scenes involving
various objectives proposed in NTIRE 2022 and has been the most
authoritative data set. CAVE has been a widely used hyperspectral data
set and consists of only 32 scenes. ICVL, Harvard, and NUS are three
data sets involving large views.

Some aerial/satellite hyperspectral data sets are listed in Table 4.
Aerial/satellite hyperspectral images cover wider wavelength with
more channels to better reflect the radiation properties of ground ob-
jects. These data sets always consist of one scene but with classification
labels. Some works also use these hyperspectral images to evaluate the
spectral super-resolution algorithms.

We collect public hyperspectral data sets given that high-quality
hyperspectral data sets are essential for learning-based algorithms. The
online links of these data sets are included in our benchmark.

3.3. Experimental setting

3.3.1. Comparison methods
In this work, we select 11 methods, including DenseUnet [42],

CanNet [45], HSCNN+ [50], sRCNN [53], AWAN [60], FMNet [69],
HRNet [70], HSRnet [71], HSACS [73], GDNet [77], and SSDCN [79].
These methods are relatively representative in the network architec-
ture, feature extraction, and physical modeling. Furthermore, we have
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collected as many codes as possible.
3.3.2. Assessment details
We select different quantitative quality metrics for three applica-

tions. For spectral recovery, the spectral fidelity is more important.
Thus, in addition to MRAE and RMSE in the NTIRE 2022 [120], we
used mPSNR in decibel units and SAM as the quantitative indexes.
For image colorization, we use CC, mPSNR, and mSSIM. In spectral
compressive imaging, mPSNR, mSSIM, and SAM are used to evaluate
the reconstruction quality of the comparison methods.

3.3.3. Implementation details
All codes are implemented with their recommended parameter set-

tings. Table 2 lists details in spectral recovery, including the model
super-parameters and learning rates. The models are trained by Pytorch
framework running in the Linux environment with 64 GB RAM and one
Nvidia RTX A5000 GPU. We employ the adaptive moment estimation
(Adam) [142] optimizer (𝛽1=0.9 and 𝛽2=0.999) for 200 epochs to train
models with Cosine Annealing scheme [143].

3.4. Computational complexity and speed

Table 2 reports the parameter numbers, floating-point operations
(FLOPs), and runtime in the last three columns. HRNet employed
many densely connected blocks to extract multiscale and multi-depth
features, thereby requiring the most parameters. CaNet is famous as a
moderately deep residual CNN with the least parameter and with fast-
running speed. With multiple downsampling and dense bottlenecks,
although DenseUnet requires 10 times as many parameters as CanNet,
its FLOP is low. Moreover, the FLOP of sRCNN is the highest due to the
pixel-by-pixel reconstruction, but its parameter number is small. The
parameter in AWAN is only half as many as in HRNet; it requires seven
times more FLOPs for more residual attention blocks. HSRnet requires
less parameters than DensUnet but five times more FLOPs due to the
extra addition and subtraction operations in deep unrolling. In terms
of running time, CanNet and SSDCN are two most rapid small models.
On the contrary, HSACS requires a hundred times more SSDCN for 3D
convolutions.

3.5. Spectral recovery

NTIRE workshop aims to provide an overview of the new trends
and advances in image restoration, enhancement, and manipulation;
it is the largest and the most famous competition including spectral
recovery track. Therefore, we utilize the available ARAD1K data set
provided by NTIRE 2022 as a benchmark to evaluate the spectral

recovery performance of the comparison methods in this work.
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Table 5
Quantitative results of eleven spectral super-resolution methods in three applications. The best is highlighted in bold and the second-best is underlined.

Methods Spectral recovery Image colorization Spectral compressive imaging

MRAE RMSE mPSNR SAM CC mPSNR mSSIM mSSIM mPSNR SAM

DenseUnet [42] 0.3710 0.0518 26.2478 8.1449 0.9629 26.1123 0.9306 0.7038 33.5929 14.3444
CanNet [45] 0.4254 0.0601 24.7973 6.1849 0.9642 26.8944 0.9440 0.7003 33.3752 14.5810
HSCNN+ [50] 0.3627 0.0553 25.4941 5.6498 0.9644 26.9500 0.9445 0.6918 32.7866 15.3633
sRCNN [53] 0.4768 0.0660 24.1108 7.5244 0.9643 26.8817 0.9441 0.5483 29.7971 19.3639
AWAN [60] 0.2133 0.0379 30.3096 5.4097 0.9633 25.3571 0.9317 0.7610 35.1526 12.6573
FMNet [69] 0.3728 0.0486 26.7271 5.7330 0.9632 26.5658 0.9412 0.6729 32.9031 16.7854
HRNet [70] 0.3624 0.0544 25.7755 5.5840 0.9646 26.8922 0.9440 0.7209 33.6897 13.9708
HSRnet [71] 0.2462 0.0436 29.2922 6.0272 0.9636 26.5587 0.9403 0.7096 33.5001 14.0956
HSACS [73] 0.2015 0.0320 31.4928 6.0432 0.9645 26.8579 0.9436 0.7095 33.4033 14.3408
GDNet [77] 0.3300 0.0461 27.1448 6.5008 0.9638 26.8986 0.9406 0.6107 29.8844 22.1558
SSDCN [79] 0.3000 0.0585 26.8972 6.2957 0.9644 26.9535 0.9448 0.6378 31.7991 15.8913
Fig. 14. Spectral recovery results of eleven deep learning-based methods, the chosen true-color images is ‘‘ARAD_1K_912’’.
Fig. 15. Spectral recovery results of eleven deep learning-based methods. Different color shows different SAM values, as defined in color bar.
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ARAD1K data set consists of 1000 images with the size of 482 × 512;
t is divided into training images (900 RGB-HS pairs), validation images
50 pairs), and test images (50 pairs). We use 900 images as train-
ng data and 50 validation images to perform quantitative evaluation
ecause NTIRE 2022 has only released the training and validation
mages. Limited by the CodaLab platform, NTIRE 2022 only requires
articipants to upload the central 226 × 256 region of results for
uantitative evaluation. Moreover, MRAE, RMSE, mPSNR, and SAM are
alculated over the entire region.

Table 5 lists the quantitative results of 11 deep learning-based spec-
ral super-resolution algorithms. HSACS achieves the best performance
mong all indexes, and AWAN obtains the second-best results. The two
odels are considerably ahead of other algorithms in all indicators,

specially in mPSNR. Nevertheless, SAM of HSACS is even higher than
SRnet. In addition, the good performance of HSACS comes with the
igh computational cost. HSACS runs 50 times longer than AWAN,
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S

0 times longer than DenseUnet, and 150 times longer than CanNet.
RCNN achieves the worst MRAE, RMSE, and mPSNR, indicating that
ixel-by-pixel recovery harms the spatial structure. DenseUnet obtains
he highest SAM and shows poor spectral maintenance. CanNet, which
hows poor spatial fidelity, obtains relatively low SAM among these
ethods.

Fig. 14 display the true-color-synthesis image of data named
‘ARAD_1K_912’’ with bands 27, 17, and 10. sRCNN, DenseUnet, and
SDCN show severe spectral distortion as the emerald in the upper right
orner of zoom-in box turn into other colors. DenseUnet suffers blurring
specially in edges. In general, AWAN, HSRnet, and HSACS perform
ffectively in spatial details and spectral fidelity. To discuss the spectral
aintenance of these deep learning-based methods on different targets,

ig. 15 presents the SAM maps of the two images. Their main objectives
re buildings and a bushy tree. Except SSDCN, all methods obtain low
AM on the background. FMNet shows better spectral fidelity around
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Fig. 16. Spectral recovery results of eleven deep learning-based methods. We display the recovered spectra at different locations.
Fig. 17. Colorization results of eleven deep learning-based methods on two selected gray images.
building edges. Moreover, HSCNN+ and FMNet show superiority on
the buildings with repetitive regular geometry. HSRnet and AWAN
recover better spectra of leaves with lower SAM. To further discuss this
phenomenon, we select two pixels on buildings and trees and display
the recovered results generated by all methods, as shown in Fig. 16.
Similar conclusions could be found, that is, HSRnet can reconstruct
more similar reflectance as real spectra of vegetation. Moreover, the
spectra recovered by FMNet show high consistency with real buildings.
13
3.6. Image colorization

In this review, we selected SUN attribute database [144] to compare
the performance of the selected sSR methods in image colorization.
SUN attribute database includes 14 340 RGB images in ‘‘jpg’’ format
with more than 700 categories, involving vehicles, buildings, sights,
and indoor scenes. We only used the 872 images starting with the letter
‘‘a’’ to build our training and test data in this work. We randomly
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Fig. 18. Spectral compressive imaging results of eleven deep learning-based methods. ‘‘Snapshot’’ denotes the observed snapshot single-band data. ‘‘Input’’ means the shift-back
data cube following [133]. Except ‘‘Snapshot’’, we displayed the band 27 for all hyperspectral images.
take 42 images with the size over 450 × 450 for test, where only
the 450 × 450 central areas are used. Then, we cut the remaining
830 images into 256 × 256 patches and obtain 3524 training samples.
Following [145], we transformed RGB images into 𝑌 𝐶𝑏𝐶𝑟 color space
and used the luminance 𝑌 as the input grayscale image.

Quantitative results are listed in Table 5, where all the methods
show similar colorization performance. SSDCN and HSCNN+ achieve
relatively better results. SSDCN obtains the highest mPSNR and mSSIM,
whereas HSCNN+ achieves the second best in the two indexes. This
phenomenon reveals that image colorization is a one-to-three mapping,
which can be appropriately dealt with by either shallow or deep
networks. Furthermore, the gap between the best and the worst results
is not evident. Fig. 17 displays the colorization results on two selected
gray images. Results on the first image truly obtain natural colors
and are in better accordance with human vision. Although the gap
of colorization performance is tiny, DenseUnet suffers some spatial
degradation. Compared with the results on the second image, image
colorization using spectral super-resolution algorithms performs well
on the images where the overall tone is more consistent. They can
hardly achieve good performance when dealing with images with
various colors.

Results in this application have proven the potential of deep
learning-based spectral super-resolution algorithms in image coloriza-
tion, and they also revealed that the existing sSR algorithm could hardly
mine the spectral diversity when the input information is insufficient
because RGB can be regarded as a relatively low-dimensional spectral
information. Thus, designing a robust model that could extract more
accurate spectral features and handle with various spectral mapping is
a good route to further improve the sSR performance.

3.7. Spectral compressive imaging

We followed the same spectral compressive imaging experimental
procedure as in [133], including the simulated CASSI system and the
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preprocessing prior to reconstruction, to maintain consistency with
mainstream works. The training data and test images used are obtained
from CAVE database [146]. CAVE database consists of 32 hyperspectral
images with the size of 512 × 512. We selected 26 images randomly
as training data and the remaining images for test. All samples were
cropped into 256 × 256 patches. After data augmentation, we obtained
832 training samples.

As listed in Table 5, AWAN performs great potential for achieving
spectral compressive imaging. All methods obtained a high SAM, in-
dicating that the generalization of all spectral super-resolution-based
algorithms in this domain is limited. Moreover, the highest mSSIM is
0.7610, although mPSNR is up to 35, implying that the spatial structure
of the recovered images may be insufficient. As shown in Fig. 18,
only few methods could recover the original shape under the special
degradation of CASSI. Among the 11 deep learning-based algorithms,
AWAN reconstructs the completed lemons and color squares with the
highest similarity the same as the real hyperspectral image. FMNet
could obtain rough shapes; however, it also produces some artifacts
around the upper left corner of the lemon. sRCNN suffers from the
coded aperture mask for the pixel-by-pixel processing.

Results in spectral compressive imaging indicate the limitations
of deep learning-based sSR algorithms. Under a special degradation,
such as CASSI, CNN-based algorithms can hardly learn the accurate
one-to-many mapping. In CASSI, the original purpose of the coded
aperture mask is to maintain as much spectral information as possi-
ble. Moreover, algorithms designed for spectral compressive imaging
always consider the mask through their complete framework. However,
spectral super-resolution algorithms only consider the spectral map-
ping from low-spectral-resolution images to high-spectral-resolution
images. For spectral super-resolution algorithms, the coded aperture
mask even obstructs them from preserving spatial fidelity. According
to this assumption, we build one more experiment. We simplify the
degradation and only maintain the integration in CASSI. In other words,
we calculated the mean image in spectral dimension and obtained the
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Fig. 19. Spectral compressive imaging results with mean images as input. ‘‘Input’’ denotes the mean images of the ground truth hyperspectral image. We displayed the band 17
for all hyperspectral images.
Fig. 20. A schematic of a new assumptive spectral imaging.
Table 6
Quantitative results of eleven spectral super-resolution methods in spectral compressive imaging under the new assumption. The best is highlighted in
bold and the second-best is underlined.

DenseUnet CanNet HSCNN+ sRCNN AWAN FMNet HRNet HSRnet HSACS GDNet SSDCN

mSSIM 0.8727 0.9158 0.9316 0.9340 0.8737 0.9325 0.9246 0.9113 0.9302 0.9237 0.9362
mPSNR 36.3706 34.9508 37.2827 37.3718 33.4847 37.4866 37.0962 36.2611 37.4726 35.6169 37.3850
SAM 14.4575 17.5100 14.5470 14.4883 21.0537 14.5010 14.5325 15.2748 14.2508 16.3637 14.0658
degraded single-band observations. Quantitative results are listed in
Table 6. The table shows that, on the average, mSSIM increased by 35%
and mPSNR increases by 4 dB. However, SAM also increases by 3%. The
increase in spectral errors proved that the coded aperture masks truly
helped in maintaining spectral fidelity. In our new protocol, SSDCN
achieves the best performance. HSACS, sRCNN, and FMNet also obtain
good recovery effects. Visual results are shown in Fig. 19. Compared
with Fig. 18, the reconstructed images are improved in the spatial
domain. DenseUnet exhibited some blurring, and AWAN showed some
shadows around the numbers.

In conclusion, although deep learning-based sSR algorithms show
weakness in handling spectral compressive imaging, they also exhibit
their potential to achieve one-to-many mapping. On the one hand, the
15
experimental results indicate that the universality of spectral super-
resolution algorithms requires further study. On the other hand, the
form of efficient spectral imaging is unnecessarily limited to spec-
tral compressive imaging. Here, we provide a new assumption about
spectral imaging, as shown in Fig. 20. The observed images are a single-
band spectral mean image with a mean and variance image. When
hyperspectral images are required, people could normalize the spectral
mean image and copy it to build an image cube with the same size as
the hyperspectral images. Then, the means and variances of different
bands are used to achieve the inverse normalization. Finally, a CNN-
based model is built to optimize the generated hyperspectral images.
In this approach, various algorithms can be utilized to achieve spectral
imaging with low cost as well as spatial–spectral fidelity.
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4. Trends and challenges

Spectral super-resolution is greatly import to enhance the physical
radiation characteristic of targets. Experiments proved that spectral
super-resolution helps in computational synthesis of hyperspectral im-
ages of available low-spectral-resolution data, better perception of the
world of gray-scale images, and recovery of hyperspectral data from the
low-cost snapshot. Thus, spectral super-resolution covers the shortage
of sensors in the form of computational imaging, which yields twice
results with half the effort of improving the sensors.

Since the early 1990s, spectral super-resolution has been developed
over decades with the efforts of many researchers and satisfied the
wave of deep learning after 2015. From Unet, ResNet, and GAN to
attention, joint data- and model-driven approach, deep learning is
growing fast and certainly boost spectral super-resolution. While deep
learning brings benefits, it also comes with challenges.

First, existing deep learning-based methods have achieved satisfac-
tory visual effects consistent with human eyes, for further better results,
lightweight parameters, fast running speed, and strong generalization
ability; the development of model architecture still has a long way
to go. Second, current studies are based on clean images, whereas
images captured in the real world usually suffer various quality degra-
dation, including image noise, rains, fogs, clouds, overexposure, and
underexposure. Improving the algorithm robustness is also necessary in
deep learning-based spectral super-resolution. Finally, the future trend
of image processing is cooperative multitasking. Humans are always
greedy, and we particularly feel the desire for fulfilling multiple tasks
through a single model. Exploring the commonality among different
tasks and leveraging useful information among them is the key to
realize multi-task learning.

In accordance with these concepts, we propose further trends and
challenges in spectral super-resolution, where three aspects are in-
volved, namely, model architecture, robustness, and multi-task learn-
ing.

4.1. Model architecture

Spatial–spectral feature extraction. Deep learning-based spectral
super-resolution aims to extract spatial–spectral features and learn
the mapping from low-spectral-resolution domain to high-spectral-
resolution domain through big data set. The key of these algorithms
is their ability to extract spatial–spectral features. In the development
of deep learning-based spectral super-resolution, studies utilized U-net,
very deep networks, GAN, or attention mechanism and explored more
relationships between spatial–spectral features. Other studies injected
physical knowledge into the model to enhance its ability of spatial–
spectral feature extraction. Compared with traditional algorithms or
early networks, existing models have made great progress in perfor-
mance. However, they currently face two problems. First, using the
same convolution kernel to reconstruct different ground objects may
not be the best option [147]. Second, convolutions can only learn
the local relationship but hardly consider the influence of long-range
objects. As mention in Section 2.3.2, some works have attempted to
solve the first problem using group recovery. However, the grouping-
then-reconstruction processing breaks the end-to-end approach of deep
learning and increases the propagation error. The main method to solve
this problem is building a network that could extract various spatial–
spectral features differentially. Moreover, for the second problem, we
can determine some inspiration in the latest achievements of deep
learning. Transformer is famous for its strong ability to capture global
information and long-range interaction on similar objects [148,149]. As
transformer has shown promising performance in hyperspectral image
processing [150–153], some works attempted to introduce transformer
into spectral super-resolution and were successful [154–156]. However,
lack of focus on local information hinders the more general develop-
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ment of transformer in spectral super-resolution. Thus, integrating CNN
with architecture that can capture global long-range relationship is the
better solution of the second problem.

Algorithm complexity and running speed. Spectral super-
resolution is always employed as an image enhancement after sen-
sor imaging, providing more spectral information for the subsequent
applications that involve high-level image semantic. Existing state-of-
the-art algorithms usually depend on a large number of parameters
and extremely frequent floating-point operations, improving the recon-
struction performance as well as increasing the computational burden
on the processor. The future trend of image enhancement would
gradually move towards computational imaging, i.e., in-camera pro-
cessing. To realize in-camera processing, algorithm complexity should
be reduced, and the runtime speed should be increased. More efficient
convolutional operator [157–160], better optimization algorithm in
training [161], and model compression [162–165] might be some
possible solutions for this problem. However, when transferring these
methods into this task, we should also consider the physical characteris-
tics of spectral super-resolution. Significantly, the improvement should
not affect the model ability to learn the spectral degradation; otherwise,
it would reduce the performance.

Generalization. Different sensors capture images in various spec-
tral resolution due to the different spectral response functions. The ma-
jor stumbling block in model generalization of spectral super-resolution
is that algorithms are trained in the single specific degradation. It
results in a fixed mapping that the networks could learn. Further study
is required for the development of models to handle diverse types
of spectral degradation that are applicable in real-world scenarios.
Furthermore, the fact that CNNs cannot adaptively adjust the number
of filters according to input and output also limits the generalization of
deep learning in spectral super-resolution. One feasible solution seems
to be the head-and-tail replaceable network. The idea is pre-training
a backbone network in the high-dimensional feature domain using an
overcomplete hyperspectral data set involving various sensors, and then
multiple head and tail networks are trained for different RGB input
and hyperspectral output data. In this manner, we are only required to
select and stack the most suitable head and tail for addressing different
spectral super-resolution scenarios, greatly improving the algorithm
generalization.

4.2. Robustness

Low-quality data. As shown in Figs. 21(a) to 21(e), images in
real world always suffer from various quality degradation due to
uncontrolled imaging environment, including imaging noise [166],
raindrops [167], haze [168], multi-focus [169,170], and illumination
changes [171]. Therefore, improving the algorithm stability of spectral
super-resolution is necessary to deal with complex low-quality data. Fu
et al. [172] noticed the importance of interference factors and used
external–internal learning to obtain more robust algorithms. Unfortu-
nately, the internal learning utilized is similar to the self-supervised
mechanism, which is highly dependent on the comprehensiveness
of training data. Existing spectral super-resolution data set usually
involves one type of interference factor at most. A data set that contains
clean hyperspectral and real-world low-spectral-resolution image pairs
is necessary to increase the algorithm robustness of spectral super-
resolution. This data set should consider as many interference factors as
possible, including digital photograph and satellite data. Furthermore,
the images should have better covered diverse objects and involve
various climates and light conditions.

Information missing. In addition to these quality degradation fac-
tors shown in Figs. 21(f) and 21(g), an extreme condition attributed to
the thick fog or clouds includes missing information. Covered by thick
fog, the captured photographs can only show the details of close-range
objects, whereas targets in the distant view lose their own radiation

characteristics. Clouds always appear in the satellite images, directly
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Fig. 21. Different types of disturbance suffered by real-world images that affect the algorithm robustness.2
cover the original ground targets, and seriously influence the subse-
quent remote-sensing image interpretation. Existing data sets ignore the
information missing in spectral super-resolution and obtaining clean
hyperspectral images may be relatively difficult. We can build a spectral
super-resolution data set that is even more challenging. Low spectral-
resolution images in this data set are covered by different levels of
clouds and fogs, which are synthesized by the algorithm. Introducing
synthesized prior into original spectral super-resolution data set to
overcome information missing would further strengthen the algorithm’s
robustness.

Lack of real spectra. Existing spectral super-resolution algorithms
couldachieve great effect because they are based on a hyperspectral
data set. Supervised by the prior knowledge of data sets, algorithms
can learn the relationship between high and low spectral-resolution
domains effectively. In practical application, however, we can hardly
obtain satisfactory real spectra all the time, especially when we have a
specific research subject. In remote sensing, most satellites revisit the
same area periodically, except the geostationary satellite. Thus, when
researchers are interested in a particular area at a specific time, they
can hardly obtain the real spectra. Semi-supervised [175] and unsu-
pervised learning [176] allows us to train the model with few (or even
without) samples. Some researchers have focused on semi-supervised
or unsupervised spectral super-resolution algorithms and achieved good
performance [58,77,79]. In the future, exploiting hyperspectral prior in
pre-existing data sets and employing transfer learning with the spectral
response functions of the target sensor can further overcome the lack
of real spectra in spectral super-resolution algorithms.

Spectral interpolation. The current spectral super-resolution
method is discussed based on the assumption that the input image
is degraded from the corresponding hyperspectral wavelength range,
for example, using spectral response functions of RGB in the visual
range. With the increasing demand for high-quality hyperspectral data,

2 The shown multi-focus image pair comes from MEF data set [173], and
the multi-exposure image pair comes from Lytro data set [174]. The others are
downloaded from the website: https://image.baidu.com.
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recovering spectral channels out of the original range is also an in-
teresting work and a further direction of spectral super-resolution. In
2019, Lore et al. [55] selected some spectral bands in the hyperspectral
image as input, and the missing bands were filled with interpolated
values between the two neighboring available channels. They found
that as the number of discarded bands increases, the performance of the
model improves. In the same year, Gewali [53] found that increasing
the number of input bands from 4 to 8 significantly reduces the
reconstruction error in remote sensing imagery. They also believed that
a larger number of input bands can capture more information about the
target spectra. Thus, with a few available channels, recovering high-
resolution hyperspectral images with numerous channels even covering
a wider spectrum, such as infrared, ultraviolet, short wave, microwave,
is extremely urgent.

Spectral imager. The spectral super-resolution methods reviewed
in this survey are all algorithms addressing the captured images. No
matter how good the performance is, there still is spectral informa-
tion missing during computational imaging. Thus, some works tried
to achieve finer-resolution spectral imaging in terms of the hard-
ware, as listed in Table 7. Zhang et al. [177] developed a deeply
learned broadband encoding stochastic hyperspectral camera and im-
proved the spectral resolution up to 1 nm. Mu et al. [178] inte-
grated spectrally-modulated polarimetry into the Optically Replicating
and Remapping Imaging Spectrometer (ORRIS). Ji et al. [179] pro-
posed a learning-powered snapshot hyperspectral imaging and used
it to measure hemodynamic parameters with a mobile phone. Yako
et al. [180] developed a video-rate HS camera with an array of 64
Complementary Metal–Oxide–Semiconductor (COMS)-compatible Fabry–
Pérot filters. Wang et al. [181] designed an on-chip spectrometer using
arrays of photodetectors. Xiong et al. [182] presented a silicon real-time
ultraspectral imaging chip based on reconfigurable metasurfaces and
used it in imaging brain hemodynamics. Finer resolution in spectral im-
ager brings fast imaging speed and accurate spectral information with
only one-time production cost, which is more beneficial to industrial
applications. Thus, spectral super-resolution in hardware, including the
finer-resolution spectral imagers and even the ultraspectral imagers, is
also a work direction with bright future.

https://image.baidu.com
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Table 7
Some works about deploying finer-resolution spectral imaging on the spectral imager.

Works Introduction Range Resolution
(nm) (nm)

Zhang et al. [177] a deeply learned broadband encoding stochastic
hyperspectral camera is developed.

400–700 1

Mu et al. [178] spectrally-modulated polarimetry is integrated into the
ORRIS.

450–750 ≈6

Ji et al. [179] learning-powered snapshot hyperspectral imaging is
introduced to measure hemodynamic parameters with a
mobile phone.

380–720 0.5

Yako et al. [180] a video-rate HS camera is developed with an array of 64
CMOS-compatible Fabry–Pérot filters.

450–650 10

Wang et al. [181] an on-chip spectrometer is designed using arrays of
photodetectors.

550–750 1

Xiong et al. [182] a silicon real-time ultraspectral imaging chip based on
reconfigurable metasurfaces is proposed and then used in
imaging brain hemodynamics.

450–750 0.8
4.3. Multi-task learning

Low level & Low level. Spectral super-resolution, as a low-level
image processing, aims to enhance the quality of the acquired images
through increasing spectral channels. Although the reconstructed im-
ages represent the radiation characteristics of the target better, they still
suffer from other quality degradations, as described in Section 4.2. Low
quality and missing information seriously affect the wide deployment
of the reconstructed images in subsequent applications. With the ever-
growing requirements for high-quality hyperspectral data, combining
multiple low-level image processing tasks to solve multiple quality
degradation problems simultaneously would be a new direction of
spectral super-resolution in the future. The low-level tasks that can
be solved jointly include denoising [60], cloud removal, dehazing,
inpainting, spatial super-resolution [62], spatial–spectral fusion [81],
multi-focus fusion, and multi-exposure fusion.

Low level & High level. As a computer vision task, spectral super-
resolution is only used as an assistive technique to generate higher-
quality hyperspectral data. Acquiring high-quality data is only the first
step in perceiving the world from image. Extracting semantic informa-
tion and combining human priors to interpret images into knowledge
that people can easily understand would satisfy human needs better.
Common techniques include semantic segmentation, classification, ob-
ject detection and extraction, and tracking. In some early works [48,
54,68,80], researchers have proven that results in high-level computer
vision tasks, such as class, category, or clustering information, can
improve the spectral super-resolution performance. On the contrary,
better spectral information leads to better segmentation, classification,
or detection. Combining spectral super-resolution with different high-
level tasks is performed not only to obtain data and class results
simultaneously, but also to share the feature information extracted from
different-level tasks, which could benefit each other.

Data reconstruction & Parameter inversion. Hyperspectral im-
ages, as a type of data merging spatial geometric information with
spectral radiation characteristic, have been widely used in estimating
biological or environmental parameters. Schlerf et al. [183] employed
a physical model to estimate structural canopy variables from hy-
perspectral remote sensing data. Wei et al. [184] used a combined
spectral index model to retrieve the soil organic matter content from
hyperspectral data. Wang et al. [185] discussed the feasibility and chal-
lenges in obtaining heavy metal content in soil and vegetation using
hyperspectral sensing. Zarco-Tejada et al. [186] calculated chlorophyll
content in closed forest canopies with hyperspectral data. Edelman
et al. [187] estimated the age of blood stains using hyperspectral
imaging. Combining spectral super-resolution with parameter inversion
reduces the acquisition cost and meanwhile improves the accuracy of
parameter estimation. Some works have focused on this problem. For
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example, Park [188] improved the spectral resolution of RGB inner
eyelid images and estimated the blood hemoglobin. With the continu-
ous popularization and rapid development of smart phones, people can
easily obtain high-quality RGB images. The algorithm that combines
spectral super-resolution with parameter inversion can help people
obtain real-time information closely related to human life and health,
such as biochemical parameters, food freshness, pesticide residue, and
air quality.

5. Conclusions

Deep learning-based spectral super-resolution works as human’s
third eye and helps people better perceive the world from a new
perspective with spectral radiation information. This study reviews
the development of deep leaning-based spectral super-resolution algo-
rithms from the network architecture, feature extraction, and physical
modeling. We have collected almost all spectral super-resolution algo-
rithms based on deep learning. To the best of our knowledge, studies
that comprehensively review spectral super-resolution algorithms are
limited. In addition, the normal application of spectral recovery, we
have discussed the potential of deep learning-based sSR algorithms
in image colorization and spectral compressive imaging. Moreover,
a comparable benchmark involving three applications is proposed. A
toolbox including unified data sets and training codes is provided in
https://github.com/JiangHe96/DL4sSR. Researchers are only required
to upload their models and easily obtain their results. At the end of this
review, we also present our views on the trends and challenges of deep
learning-based spectral super-resolution. For example, improvements
in model generalization and lightweight model are promising works.
Another potential direction is combining multiple tasks, including low-
level tasks, high-level tasks, or parameter inversion. Considering mul-
tiple degradation into algorithm modeling may be a good solution to
increase robustness. Furthermore, we would make more comprehensive
reviews about image colorization and spectral compressive imaging
based on deep learning and discuss about their difference from spectral
super-resolution.
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