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Abstract— Optical-flow-based and kernel-based approaches
have been extensively explored for temporal compensation in
satellite Video Super-Resolution (VSR). However, these tech-
niques are less generalized in large-scale or complex scenarios,
especially in satellite videos. In this paper, we propose to exploit
the well-defined temporal difference for efficient and effective
temporal compensation. To fully utilize the local and global
temporal information within frames, we systematically modeled
the short-term and long-term temporal discrepancies since we
observe that these discrepancies offer distinct and mutually
complementary properties. Specifically, we devise a Short-term
Temporal Difference Module (S-TDM) to extract local motion
representations from RGB difference maps between adjacent
frames, which yields more clues for accurate texture represen-
tation. To explore the global dependency in the entire frame
sequence, a Long-term Temporal Difference Module (L-TDM) is
proposed, where the differences between forward and backward
segments are incorporated and activated to guide the modulation
of the temporal feature, leading to a holistic global compensation.
Moreover, we further propose a Difference Compensation Unit
(DCU) to enrich the interaction between the spatial distribu-
tion of the target frame and temporal compensated results,
which helps maintain spatial consistency while refining the
features to avoid misalignment. Rigorous objective and subjective
evaluations conducted across five mainstream video satellites
demonstrate that our method performs favorably against state-of-
the-art approaches. Code will be available at https://github.com/
XY-boy/LGTD.

Index Terms— Satellite video, super-resolution, temporal
difference, local-global compensation, remote sensing.

I. INTRODUCTION

COMPARED to traditional static remote sensing images,
video satellite provides continuous information to a
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specific area, which is crucial for dynamic earth observation.
Therefore, it has been widely applied to dynamic scene
applications such as change detection [1], object tracking [2],
and traffic monitoring [3]. However, the spatial resolution of
satellite video is usually contaminated by the complex aerial
environment, limited by the intrinsic resolution of satellite
video sensors (∼1m), and degraded by data compression. Con-
sequently, high-frequency information in the satellite video
may be lost, which dramatically reduces the visual quality
and degrades performance in subsequent applications. To this
end, it is essential to improve the spatial resolution of satellite
videos.

Compared to upgrading the hardware to promote the resolu-
tion, software-based super-resolution (SR) technologies greatly
save maintenance, transmission, and storage costs [4], [5], [6],
[7], [8]. Early SR approaches usually use hand-craft priors to
make this problem well-posed. However, their performance
is limited by these laborious priors, and they often suffer
from complex optimization problems. By contrast, convolution
neural networks (CNNs) [9], [10], [11], [12], [13], [14] have
emerged as a preferable choice due to their powerful non-linear
representation ability. In spite of achieving a decent result in
single image SR (SISR), these algorithms reach a bottleneck
as the temporal information is not considered [15], [16], [17],
[18], [19], [20]. Furthermore, most video SR (VSR) methods
are specialized for natural videos and are not easily applied
to satellite videos. Hence, more efforts should be dedicated to
developing an applicable method for satellite VSR.

The key to the success of VSR is compensating the mis-
aligned pixels using temporal redundancy from neighboring
frames. Most previous works are engaged in optical flow [21],
[22], [23] and kernel estimation [24], [25] for temporal
compensation. The optical-flow-based methods often employ
an extra component to get the flow maps between frames
or jointly optimize the flow estimation sub-network with
the whole network. However, flow estimation is a laborious
task and would introduce high complexity. The kernel-based
methods, e.g., 3D convolution [26], [27] and deformable
convolution (DConv) [28], either ignore the valuable tempo-
ral priors or have a limited spatial-temporal receptive field.
Moreover, these approaches are easily collapsed in complex
motion. Recently, several works [29], [30] proposed to propa-
gate rich historical information recurrently. Nevertheless, they
acquire a considerable memory cost to cache future and
past frames and neglect the potential of local compensation
because the recurrent structure naturally focuses on long-range
dependencies.
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Fig. 1. Comparison between RGB temporal differences and optical flow
maps. The optical flow maps were generated by PyFlow [34]. Temporal
differences activate more accurate and sharp cues than optical flows. Besides,
the local temporal difference and global temporal difference are not equally
informative as they reflect a different level of difference.

In contrast to natural video, satellite video exhibits unique
characteristics that make temporal compensation more compli-
cated. Since the static background is the main present content
of remote-sensing scenes, both optical flow estimation and
deformable convolution inevitably involve redundant calcula-
tions in the background pixels. In particular, optical flow esti-
mation is fragile to the multi-scale small objects and complex
boundary tremors that commonly appear in satellite videos.
These inherent challenges frequently lead to inaccuracies in
the temporal compensation process. Recently, the temporal
difference is demonstrated informative in modeling motion
information and can be an alternative to optical flow [31], [32],
[33]. In light of this, we make the first attempt to apply the
explicit temporal difference to satellite VSR tasks. As shown
in Fig. 1, the motion information could be well-activated in
temporal difference maps, which implied more accurate and
sharp texture information than optical flows. Additionally,
temporal difference information of remote-sensing images
is sparse because the massive redundancy (highly similar
background across frames) is reduced to low values after
subtraction. As a result, these temporal differences can serve
as sparse signals, facilitating efficient inferences in large-
scale remote-sensing imagery. Furthermore, both the local and
global contents are crucial for compensation in the sense that
they are able to capture the distinctive and complementary
properties of motion information. As illustrated in Fig. 1, the
local temporal difference is prominent on the boundary of
moving objects, while the global temporal difference contains
more edge and shape details. This observation drives us to
introduce a distinctive two-level temporal modeling strategy,
systematically addressing both local and global temporal com-
pensation.

Specifically, this paper proposed a Local-Global Temporal
Difference learning network (LGTD) for satellite VSR. The
proposed Short-term Temporal Difference Module (S-TDM)
derives the local information from adjacent frames with low

variance, while the global information with large variance
is inferred by a Long-term Temporal Difference Module
(L-TDM). Instead of decomposing neighboring frames into
high-variance and low-variance components using laborious
pre-processing [33], our LGTD directly learns complementary
information from RGB differences. In S-TDM, the RGB dif-
ference maps are transformed into local motion representations
and supplied to the target frame with lateral connections.
While some previous efforts [33] have utilized recurrent
structures to investigate forward and backward temporal dif-
ferences, our L-TDM emphasizes activating a holistic motion
representation from entire frame sequences, resulting in a
robust global compensation. To alleviate the potential mis-
alignment caused by temporal difference learning, we enhance
the interaction between the target frame and temporal informa-
tion yielded from TDMs through a Difference Compensation
Unit (DCU). In this manner, our S-TDM and L-TDM could
focus on valuable information to reconstruct the target frame
and maintain spatial consistency. In short, this paper con-
tributes as follows:

1) Different from previous temporal compensation
approaches, we generalize the idea of temporal
difference to achieve temporal compensation for
satellite VSR. The proposed local-global temporal
difference learning is computation-friendly and could
provide an alternative to optical flows.
2) Our S-TDM and L-TDM could systematically
utilize both short-term and long-term temporal com-
plementary information from local and global motion
patterns.
3) We devise a Difference Compensation Unit (DCU)
to alleviate misalignment in temporal difference
learning and to help TMDs focus on capturing tem-
poral information that is beneficial to satellite VSR.
4) Compared with optical-flow-based and kernel-
based approaches, our method achieves favorable
quantitative and qualitative results on five main-
stream video satellites.

The remainder of this paper is organized as follows:
Section II reviews video super-resolution, Section III involves
details of the proposed method, Section IV contains experi-
ments and analysis, and Section V is the conclusion.

II. RELATED WORK

A. Video Super-Resolution

Here, we first review optical-flow-based VSR methods that
employ optical flow to describe motion information, followed
by explicit motion compensation. Then, we present kernel-
based implicit alignment methods. Finally, we introduce the
recurrent propagation VSR framework.

1) Optical-Flow-Based VSR Methods: Generally, the flow
estimation algorithms can be divided into traditional and
deep-learning-based approaches. In the traditional approach,
Deep-DE [35] used ℓ1 flow [36] to generate a series of
SR drafts, then the bilinear upsampled LR target frame is
concatenated with these drafts and sent to CNN and decon-
volution layer for reconstruction. VSRNet [37] adopted the

Authorized licensed use limited to: Wuhan University. Downloaded on April 06,2024 at 06:00:17 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: LGTD LEARNING FOR SATELLITE VSR 2791

Druleas algorithm [38] to compute the flow maps and pro-
posed a filter symmetry mechanism to compensate neighbor-
ing frames. Recently, Haris et al. [21] introduced a recurrent
back-projection network (RBPN), employing an external pack-
age named PyFlow [34] for flow estimation. On the other hand,
deep learning-based flow estimation often relies on CNNs to
predict flows. For instance, Caballero et al. [39] introduced a
motion compensation transformer (MCT) that simultaneously
learns motion information and performs motion compensa-
tion. Wang et al. [22] designed a unified framework to jointly
super-resolve optical flow maps and target frames, addressing
the resolution gap between low-resolution flow maps and
latent high-resolution features. Additionally, more elaborate
networks like FlowNet [40] and SpyNet [41] are commonly
employed CNN architectures for optical flow estimation.

However, both traditional and deep learning-based methods
may not guarantee the accuracy of flow estimation, particularly
in large-scale remote sensing scenarios, leading to several
performance drops. Besides, incorporating external algorithms
and specific sub-networks for flow estimation will inevitably
increase computation consumption.

2) Kernel-Based VSR Methods: This kind of approach
usually implicitly parameterizes the temporal compensation
into convolution kernels, with notable efforts in 3D convo-
lution [42], non-local module [43], deformable convolution
(DConv) [25], and Transformer [44], [45]. Jo et al. [27]
learned a 3D Dynamic Upsampling Filter (DUF) for each
pixel to avoid explicit motion estimation and compensation.
Similarly, Wen et al. [46] employed spatio-temporal adaptive
filters to achieve implicit alignment. However, 3D convolution
is not sophisticated in modeling the temporal priors and
would increase the complexity. Non-local-based approaches
hire the non-local attention mechanism to capture long-range
dependencies, which increase the receptive field of temporal
information. Yi et al. [43] proposed a progressive fusion
strategy to aggregate the non-local spatial-temporal informa-
tion. Yu et al. [24] established a novel Memory-Augment
Non-local Attention (MANA) to memory details cross-frames.
Nevertheless, non-local learning introduces significant infer-
ence complexity and yields limited improvement. The DConv
is first proposed in [47] and carried forward by many works
like TDAN [48], EDVR [25], and D3DNet [49]. The key
to DConv is attaining and applying the offset parameters on
the convolution grid to yield a deformable sampling position.
Hence, the convolution can involve motion information inside
the receptive field. TDAN [48] used shallow convolution
layers to predict the offsets. EDVR [25] enlarged the receptive
field with the help of a pyramid structure and coarse-to-fine
alignment. D3DNet introduced DConv to 3D dimension for a
larger temporal receptive field. More recently, Isobe et al. [33]
developed a temporal difference modeling network (ETDM)
to achieve alignment by computing the temporal difference in
two subsets.

Although kernel-based methods bring promising improve-
ments, they still face harsh convergence conditions and inef-
ficient computation.

3) Recurrent Propagation VSR Methods: Such methods aim
to fully utilize the long-range dependencies by propagating

rich future or past information in a recurrent manner [50]. For
example, Huang et al. [51] proposed a recurrent bidirectional
network with forward and backward sub-networks. The two
similar sub-networks are responsible for learning the previ-
ous and past frames. In [52], [53], and [54], the authors
employ LSTM to leverage the long-distance temporal prop-
erties. While the RNN-based network is suitable for spatial-
temporal modeling, the errors caused by misalignment may
accumulate with the input length increase. Toward this end,
Chan et al. [29] come up with an information-refill and propa-
gation strategy to ease the misalignment accumulation. In addi-
tion, they enhance the interaction of bi-directional temporal
information by forward and backward propagation. Recently,
BasicVSR++ [55] is proposed to strengthen the alignment
and propagation process. More recently, Chiche et al. [56]
proposed a stable recurrent network for long-term video super-
resolution. Xie et al. [57] proposed mitigating the hidden state
artifacts to generate sharp details for recurrent propagation.

To sum up, recurrent propagation VSR methods can benefit
from RNNs or LSTMs to capture the long-range dependency
with a lightweight design. However, it is hard to train an RNN
due to the gradient vanishing. Furthermore, they still lack
using short-term information between adjacent frames since
recurrent structures naturally focus on long-term information.

B. Satellite Video Super-Resolution

In satellite VSR, early efforts [58] often transfer the single-
image super-resolution (SISR) frameworks on satellite video
without specific consideration of the characteristics of remote
sensing imagery. Later, more methods applicable to remote
sensing images were explored [59]. Jiang et al. [60] proposed
a GAN-based framework to enhance the high-frequency edge
information. Zhang et al. [61] take account for scene variation
in remote sensing images and put forward a scene-adaptive
strategy to alleviate the performance drop across scenes.
He and He [62] proposed a hybrid-scale network to fully
extracted the multi-scale information. However, these methods
are SISR, thus failing to model the temporal information and
having a bottleneck. Recently, Liu et al. [63] designed a tradi-
tional method, which adaptively examined the non-local simi-
larity in wide-range remote sensing imagery. He et al. [64] pro-
posed to employ 3D convolution to implicitly achieve motion
compensation. But it increases computational consumption
and has gained limited performance without sophisticated
design. More recently, Xiao et al. [28] proposed a multi-scale
DConv model for precise alignment and designed a temporal
grouping projection to realize effective spatial-temporal fusion.
They further put forward to employ deformable attention for
temporal alignment [65].

Years of effort have witnessed remarkable progress in
satellite VSR, but we still need an efficient and straightforward
solution to excavate the high-redundant temporal information
in satellite video.

III. PROPOSED METHOD

A. Overview

The overall flowchart of our proposed framework
is shown in Fig. 2. Given 2N + 1 LR inputs
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Fig. 2. The overall structure of our proposed Local-Global Temporal Difference learning network (LGTD). It consists of four modules: (1) Short-term Temporal
Difference Module (S-TDM), which is used for local temporal compensation; (2) Long-term Temporal Difference Module (L-TDM), which is proposed to
realize global temporal compensation; (3) Difference Compensation Unit (DCU), which is utilized for integrating the spatial and temporal information to
maintain the spatial consistency; (4) Reconstruction module, which is employed to generate the final HR target frame. Short-term Attention (SA) Block is
equipped by Channel Attention, and Multi-head Self-Attention realizes Long-term (LA) Block.

I = {It−N , · · · , It , · · · , It+N }, It is the target frame
required to be super-resolved, and the remaining frames
are neighboring frames. We devise two branches to explore
local-global complementary information separately by S-TDM
and L-TDM. The difference compensation unit aims to realize
the interaction between the temporal information obtained
from TDMs and the spatial feature. The compensated feature
is then sent to the reconstruction module to generate the final
super-resolved target frame I S R

t .
The Short-term Temporal difference Module (S-TDM),

termed TDMs (·), receives frame-wise inputs I and generates
the short-term compensated results gi , that is

gs = TDMs (I) . (1)

The spatial feature Ft is extracted from It by a 3 × 3 con-
volutional layer. Ft and gs will be sent to the Difference
Compensation Unit DCU (·) to refine the compensated gs with
the guide of Ft , thus we can maintain the spatial consistency
and alleviate the misalignment in S-TDM. The refinement
process can be written as follows:

Fs = DCU (Ft , gs) , (2)

where Fs is the short-term temporal compensated feature.
L-TDM received T = 2N + 1 features to explore the global
temporal difference. Here, we use five residual blocks to
extract T features from I. Take the forward branch in L-TDM
as an example, T features will be blended by a 1×1 convolu-
tion layer and another 3×3 convolution. In this manner, we can
smooth the long-range features to get a holistic representation

FL of the forward features. Similarly, we obtain the backward
global feature F ′

L from F ′

T , where F ′

T is the temporal reverse
version of FT . Thanks to L-TDM, we implicitly produce a
temporal activation G for temporal compensation. The global
temporal compensation result Fl is determined by:

Fl = F ′

L ⊙ G + F ′

L , (3)

where ⊙ is the channel-wise multiplication. After that, the Fl
will also be refined by DCU with the guide of Fs . The final
global-local temporal compensated feature F̂t can be generated
by the following:

F̂t = DCU (Fs, Fl) . (4)

Finally, F̂t will be reconstructed to It
S R by the reconstruc-

tion module Reconstruction (·):

I S R
t = Reconstruction

(
F̂t

)
. (5)

B. Short-Term Temporal Difference Modeling

It is observed that the motion information in short-term dif-
ferences is not prominent due to the paucity of motion pixels
in satellite videos. Therefore, it is inefficient to compensate
for each short-term difference separately as they are extremely
sparse. To address this, we choose to concatenate and enhance
all the short-term differences together to explore local motion
representation. This allows us to supply the target frame with
a more robust representation to achieve local compensation.

Specifically, S-TDM operates feature extraction from
short-term RGB difference maps between adjacent frames
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Fig. 3. The diagram of our proposed Short-term Temporal Difference Module
(S-TDM) is shown, with N = 2 taken as an example. S-TDM performs feature
extraction on stacked RGB difference maps and supplies the local motion
representations into ft for local compensation.

and propagates local motions into the target feature with
lateral connections. As shown in Fig. 3., for simplicity, we set
N = 2. Firstly, we compute four temporal differences by
subtracting adjacent frames. Then we extract features from
these RGB differences and reduce them to low-resolution
space. In this manner, we could obtain four representations{
d−2, d−1, d+1, d+2} of local motions.

As mentioned before, short-term RGB temporal differences
have overwhelmingly low response regions and are prominent
in motion pixels. Therefore, we argue that RGB differences
are sparse signals, and it is sufficient to process them in low-
resolution space. In addition, we can reduce the computational
cost of further temporal difference fusion by the pooling
operation. To make the target feature ft aware of short-term
motion, we use a two-stage compensation strategy and supply
ft with lateral connections. In the early stage, the fused
temporal representation Ds will be upsampled to the original
size and added to the target features, which can be expressed
as:

f1= ft+Up↑

(
Fusion

([
d−2, d−1, d+1, d+2

]))
, (6)

where Up↑ denotes ×2 bilinear upsampling, Fusion (·) repre-
sents a 3×3 convolution layer, and [·] is channel concatenation.
In the second stage, the fused representation Ds and f1 will be
further extracted for deep aggregation. Finally, the short-term
compensated feature gs can be written as:

gs = Res1 ( f1) + Up↑ (Res2 (Ds)) , (7)

where Res1 (·) and Res2 (·) are two residual blocks.

C. Long-Term Temporal Difference Module

Long-term temporal differences span over a larger num-
ber of frames and can offer more pronounced motion cues.
However, solely modeling the differences from long-distance

frames is inadequate for exploring holistic motion patterns.
Therefore, we propose to model the differences between the
temporally fused forward and backward sequences, which
enables us to comprehensively explore the global motion
information. Since generating the global motion representation
is more complicated, we adopt a holistic activation approach
to modulate the temporal feature, which enables robust global
compensation.

To handle the large motion while mitigating the misalign-
ment within long-distance frames, we employ a shadow align-
ment operation through our previous Multi-Scale DConv
alignment module [28]. Thus, the coarsely aligned feature FT
and F ′

T could be compressed to smooth the large variance.
Furthermore, the temporal difference is calculated between
FT and F ′

T , i.e., D f = FL − F ′

L and Db = F ′

L − FL . This
cross-difference operation encourages forward and backward
propagation to utilize complementary information in different
segments.

During the succeeding propagation, a multi-scale design is
employed to better preserve the multi-scale information in
satellite video. In particular, three operations at different scales
will be applied to the global temporal differences D f and Db:
(1) Identification connection to stabilize the gradient; (2) Deep
feature extraction on the original scale by a 3×3 convolution;
(3) Feature propagation in a small-to-large scale, achieved by
a pooling layer, a 3×3 convolution, and a bilinear upsampling.
The outputs of three operations will be aggregated and sent to
a convolution layer and sigmoid function for activation:

att f = Sigmoid

(
Conv

( 3∑
i=1

Hi
(
D f
)))

, (8)

attb = Sigmoid

(
Conv

( 3∑
i=1

Hi (Db)

))
, (9)

where Hi represents the i-th operations mentioned above. att f
and attb are the activated maps in froward and backward
branches. We composed att f and attb to obtain a final
activation G, that is:

G = α ∗ att f + β ∗ attb, (10)

where α and β are two balance coefficient. Here we set
α = β = 0.5. In the end, the long-term temporal compensated
feature Fl is generated by feature modulation:

Fl = F ′

L ⊙ G + F ′

L , (11)

where ⊙ is channel-wise multiplication.

D. Difference Compensation Unit

Benefiting from our S-TDM and L-TDM, we can sys-
tematically explore global and local temporal information.
However, misalignment can still occur due to the inherent
limitations of temporal difference learning. Towards this end,
the compensated feature Fs and Fl need to be further refined to
preserve valuable information to spatial feature Ft of the target
frame. With the help of DCU, the interference in temporal
difference learning could be eliminated, which is beneficial
for reducing artifacts caused by misalignment.
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Algorithm 1 Local-Global Temporal Difference Learn-
ing Algorithm
Input: LR frames I = {It−N , · · · , It , · · · , It+N }.
Output: The super-resolved target frame I S R

t
1 Initialization: N = 5, S = 3, σ (·) is 1 × 1

convolution, α = β = 0.5.
// Short-term Temporal Difference

2 ft = Conv (It );
3 for i = −N : +N and i ̸= 0 do
4 if i < 0 then
5 d i

= Pooling (Conv (It+i − It+i+1));
6 else
7 d i

= Pooling (Conv (It+i − It+i−1));
8 end
9 end

10 Ds = Conv
([

d−N
: d−N ]); // Local motion

11 f1= ft+Up↑ (Ds); // One stage
12 gs = Res1 ( f1) + Up↑ (Res2 (Ds)); // Two stage
// Coarse Alignment

13 FT = MSD (Res (I)) , F ′

T = reverse (FT );
// Long-term Temporal Difference

14 FL = Conv (σ (FT )) , F ′

L = Conv
(
σ
(
F ′

T
))

;
15 D f = FL − F ′

L , Db = F ′

L − FL ;

16 att f = Sigmoid
(

Conv
( S∑

i=1
Hi
(
D f
)))

,

17 attb = Sigmoid
(

Conv
( S∑

i=1
Hi (Db)

))
;

18 G = α ∗ att f + β ∗ attb; // Global motion
19 Fl = F ′

L ⊙ G + F ′

L ;
// Refinement

20 Ft = Conv (It );
21 Fs = Ft + ResNet (Ft − gs);
22 F̂t = Fs + ResNet (Fs − Fl);
// Reconstruction

23 I S R
t = Upsample

(
Conv

(
LSABN

(
F̂t

)))
.

As shown in Fig. 2, by predicting the difference feature
between spatial feature Ft and short-term temporal com-
pensated feature gs , the residual feature es will be further
enhanced and supplied to Ft . In this manner, the S-TDM will
be forced to focus on the valuable compensation information
of Ft . The difference compensation between Ft and gs can be
summarized as:

Fs = Ft + ResNet (Ft − gs) , (12)

Similarly, Fs will be compensated by Fl for the final
refinement:

F̂t = Fs + ResNet (Fs − Fl) , (13)

E. Reconstruction

After short-term and long-term temporal information com-
pensation, the spatial-temporal information is entangled.
Therefore, we can not reconstruct the compensated feature

with a naive design, such as using residual blocks. Nowa-
days, the attention mechanism has been widely used in
super-resolution reconstruction, with the success of Channel
Attention (CA) in RCAN [66] and Multi-head Self-Attention
(MSA) in SwinIR [67]. Previous work [68] has demonstrated
that CA and MSA are experts in learning short-term and long-
term dependencies, respectively. Here, we comfortably adopt
the widely used CA and MSA to reconstruct the entangled
local-global information in a hybrid design. In Fig. 2, the
Short-term Attention block (SA Block) is employed by the
CA module in RCAN, and the Long-term Attention block
(LA Block) is equipped with MSA in SwinIR. Finally, five
Long-Short Attention Blocks (LSAB) and a Pixel-Shuffle layer
are stacked to restore the super-resolved target frame:

I S R
t = Upsample

(
Conv

(
LSABN

(
F̂t

)))
. (14)

IV. EXPERIMENT AND DISCUSSION

A. Satellite Video Datasource

To comprehensively evaluate our LGTD, we collected
extensive satellite video clips from five mainstream video
satellites, including Jilin-1, Carbonite-2, UrtheCast, SkySat-1,
and Zhuhai-1. Following our previous work [28], we cropped
189 clips of 640 × 640 from Jilin-1 to build the training set.
Five scenes are randomly cropped from two Jilin-1 videos to
build the test set Jilin-T. Besides, we additionally crop four
scenes from Carbonite-2 and UrtheCast, respectively. As for
SkySat-1 and Zhuhai-1, two and one scenes are selected for
further testing. Eventually, we have 189 video clips used
for model training and 16 scenes from five satellites to evaluate
model performance. The training and test sets can be found at
https://github.com/XY-boy/MSDTGP

B. Implementation Details

Denoting the size of I S R
t as Hr × Wr × c, where c =

3 means the RGB channels, H and W represent the height
and width of LR input, and r is the scale factor. In this
paper, we only focus on r = 4. The number of input LR
frames is set to 5. During model training, we sample 4 LR
video patches with size 64 × 64 in each mini-batch. Data
augmentation is realized on LR inputs by random flip and
rotation. The initial learning rate is set to 1×10−4 and decays
to half the previous one when it reaches every ten epochs.
To minimize the L1 =

∥∥I S R
t − I GT

t
∥∥

1 distance between I S R
t

and ground-truth frame I GT
t , the Adam optimization with

β1 = 0.9 and β2 = 0.999 was used. We trained our model
on a single NVIDIA RTX 3090 for 50 epochs, and it took us
nearly 40 hours for model training.

C. Metrics

1) Peak-Signal-to-Noise Ratio (PSNR): Here, we adopt
PSNR as the objective metric for image quality evaluation.
Given a reference frame I GT

t and a test frame I S R
t , both of

size H × W , the PSNR between them is defined by:

P SN R
(

I GT
t , I S R

t

)
= 10log10

(
2552/M SE

(
I GT
t , I S R

t

))
,

(15)
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TABLE I
QUANTITATIVE COMPARISONS ON JILIN-T. THE PSNR/SSIMS ARE CALCULATED ON THE LUMINANCE CHANNEL (Y). THE FLOPS ARE COMPUTED ON

LR INPUTS WITH THE SIZE OF 160 × 160. NOTE THAT BASICVSR AND BASICVSR++ ARE RECURRENT PROPAGATION METHODS. HERE THEIR
PROPAGATE LENGTH IS SET TO 15. THE BEST AND SECOND PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE II
QUANTITATIVE COMPARISONS ON CARBONITE-2 AND URTHECAST. THE BEST AND SECOND

PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE III
QUANTITATIVE COMPARISONS ON SKYSAT-1 AND ZHUHAI-1. THE BEST AND SECOND PERFORMANCES

ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

where

M SE
(

I GT
t , I S R

t

)
=

1
H W

H∑
i=1

W∑
j=1

(
I GT
t , I S R

t

)2
. (16)

A high value of the PSNR implies low numerical differences
between I GT

t and I S R
t , which means the higher the PNSR, the

better the reconstruction quality.
2) Structural Similarity Index Measure (SSIM): SSIM is

used to measure the similarity between I GT
t and I S R

t . Different

from PSNR which uses error summation, SSIM is determined
by the combination of three factors that are luminance l (·),
contrast c (·), and structure s (·) comparison function. The
SSIM is calculated by:

SSI M
(

I GT
t , I S R

t

)
= l

(
I GT
t , I S R

t

)
c
(

I GT
t , I S R

t

)
s
(

I GT
t , I S R

t

)
. (17)
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Fig. 4. Qualitative comparisons on scene-2 of Jilin-1, scene-8 of Carbonite-2, and scene-11 from UrtheCast. Zoom in for better visualization.

More details on each comparison function can be found
in [69]. The values of the SSIM are in [0, 1]. A value close
to 1 implies a high correlation between I GT

t and I S R
t .

D. Comparison With State-of-the-Arts

We compared the proposed LGTD with state-of-the-art
approaches, including TDAN [48], DUF-52L [27], RBPN [21],
EDVR-L [25], SOF-VSR [22], MSDTGP [28], MANA [24],
BasicVSR [29], and BasicVSR++ [55]. For a fair comparison,
we retrained these methods on the Jilin-1 training set following
their official implementation. The PSNR and SSIM are used
as objective metrics to evaluate the fidelity of the restored

results. Note that the PSNR is calculated on the luminance (Y)
channel [70], and we crop 8 pixels on the boundary as [27].

1) Quantitative Evaluation: As listed in Table. I, II, III,
our LGTD surpasses optical flow-based and DConv-based
methods in terms of quantitative evaluation on various satellite
video datasets without relying on optical flow estimation.
This highlights the potential of our TDMs in overcoming the
limitations of optical flow and improving the performance of
temporal compensation in satellite videos. In particular, our
LGTD outperforms the flow-based method SOF-VSR 0.3dB
and the kernel-based method EDVR-L 0.17dB on the Jilin-T in
Table.I. In comparison to BasicVSR and BasicVSR++, which
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Fig. 5. Qualitative comparisons on scene-14 and scene-15 of SkySat-1. Zoom in for better visualization.

employ recurrent propagation for alignment, the proposed
LGTD method continues to yield favorable results while
utilizing a reduced number of input frames (5 frames compared
to 15 frames). These results prove that our S-TDM and L-TDM
can explore sufficient temporal information in a local window.

In Table. II, we found that EDVR-L and BasicVSR
yield approaching performance. Although the recurrent
propagation-based method enlarges the temporal receptive
field compared with the window-slide approach, it still can not
significantly improve the PSNR while consuming more frames
as input. Our LGTD outperforms BasicVSR++ by 0.11dB
in the Carbonite-2 dataset and by 0.1dB in the UrtheCast
dataset. This highlights the effectiveness of the proposed
L-TDM in effectively exploring long-range dependencies com-
pared to the recurrent structure. Furthermore, in Table III,
EDVR-L achieves the second-best performance on SkySat-1
and Zhuhai-1 datasets, suggesting that the DConv-based

alignment method tends to exhibit better generalization capa-
bilities in remote sensing scenarios compared to recurrent
propagation techniques. This observation can be attributed
to the fact that recurrent propagation may accumulate mis-
alignments as the number of input frames increases and the
scenes become more diverse. Benefiting from the difference
compensation unit, we can mitigate the misalignment by
enhancing the interaction between spatial and temporal infor-
mation. This, in turn, preserves spatial consistency and yields
optimal reconstruction performance.

2) Qualitative Results: The visual comparison results are
shown in Fig. 4, 5, and 6. In Fig. 4, LGTD can restore
sharper and more reliable details. Specifically, in scene-2 of
Jilin-1, UDF-52L, RBPN, and SOF-VSR produce blurs on
the wing of the plane. It suggests that both 3D convolution
and optical flow are inadequate in providing fine-grained
temporal information. In scene-11 of UrtheCast, DUF-52L and
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Fig. 6. Qualitative comparisons on scene-16 of Zhuhai-1. Zoom in for better visualization.

RBPN predict distorted lines. EDVR-L, MSDTGP, BasicVSR,
and BasicVSR++, while relatively accurate, still appear less
distinct and less clear compared to our LGTD. In scene-8
of Carbonite-2, LGTD succeeds in maintaining the accurate
shape and edges of the elliptical marks on the building.
As discussed earlier, short-term temporal difference maps
have high responses along object boundaries, while long-term
difference maps focus on the edge and shape information.
The visual comparison reveals that the proposed S-TDM and
L-TDM could exploit valuable high-frequency information and
compensate them to the target frame. Furthermore, qualitative
experiments visually reveal artifacts caused by misalignment.
Both optical flow and DCN-based approaches tend to produce
unrealistic distortions, while our DCU aids in preserving
spatial consistency.

In Fig. 5, LGTD is capable of restoring circular ground
objects and retains line information for buildings. All the
methods, except BasicVSR and our LGTD, recover contorted
results with severe artifacts. These results highlight the ability
of TDMs to maintain temporal consistency from neighboring
frames and mitigate the undesired misalignment.

In Fig. 6, we zoomed in and displayed the details of a scene
from Zhuhai-1. LGTD delivers comparatively realistic visual
performance, whereas other approaches struggle to recover
high-frequency information. To better evaluate the coherence
and consistency of the restored video over long-time series
dynamics, we recorded a line of pixels and stacked them
on the timeline. The resulting temporal profile is shown
in Fig. 7. Our LGTD generates precise long-term temporal
details, highlighting the effectiveness of our L-TDM in global
compensation.

E. Ablation Studies

In this section, we conduct extensive experiments to demon-
strate the effectiveness of temporal difference learning. Note
that the PSNR is calculated in scene-2 of the Jinlin-1 dataset.

Fig. 7. Qualitative comparisons of temporal profile. The temporal profile is
generated by recording a pixel line (red light) with stacking among frames.

1) The Number of Input Frames and Model Efficiency:
We investigate the impact of varying input frame numbers for
each model in Figure 9(b). Moreover, the correlation between
FLOPs and PSNR for each model is shown in Fig. 9(a).
Here, the PSNR values are averaged over 16 scenes within
five satellite videos. LGTD-n denotes the utilization of n
consecutive frames as input. From Fig.9(a), we observed that
LGTD strikes a favorable balance between performance and
computational complexity. The results in Fig.9(b) indicate that
our LGTD consistently attains the best performance across
all input frame conditions. As a result, we select five frames
as input for our final model, as LGTD-5 exhibits the highest
performance.

2) Effectiveness of S-TDM and L-TDM: To assess their
contributions, we conduct two comparisons by excluding the
L-TDM (Model-1) and S-TDM (Model-2). As reported in
Table. IV, the PSNR values show a significant reduction
when we do not perform temporal difference modeling. This
observation demonstrates our TDM can provide valuable local
and global dependencies for temporal compensation.

3) Effectiveness of Difference Operation: To investigate
the effectiveness and efficiency of employing difference cal-
culations in TDMs, we substitute the difference operation
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Fig. 8. The training process of different models. Model-1 and Model-2
are used to validate the effectiveness of S-TDM and L-TDM. Model-3,
Model-4, and Model-5 are designed to prove the effectiveness of calculating
differences. Model-6 and Model-7 are used to demonstrate the effectiveness
of bidirectional propagation in L-TDM. Finally, Model-9, Model-10, and
Model-11 are established to indicate the effectiveness of hybrid attention.

Fig. 9. (a) displays the relationship between FLOPs and PSNR of each
model. (b) shows the relationship between input frame numbers and PSNR.
Our LGTD achieves the best performance with acceptable FLOPs.

TABLE IV
ABLATION EXPERIMENT ON THE EFFECTIVENESS OF S-TDM

AND L-TDM. RESULTS ARE CALCULATED ON
SCENE 2 OF JILIN-T IN THE Y CHANNEL

with naive concatenation. Specifically, in Model-3, we directly
concatenate adjacent frames within S-TDM to extract local
temporal information. Model-4 stacks the forward and back-
ward features in the channel dimension and subsequently fuses
them by a 3 × 3 convolution layer to extract the long-range
dependency. Model-5 involves simultaneous concatenation
within both S-TDM and L-TDM. The training process is
shown in Fig. 8, and the PSNR results are reported in Table. V.
It can be seen that simple concatenation results in a PSNR
decrease of 0.1dB, accompanied by increased FLOPs (3.95G)
and parameters (0.07M). Conversely, our LGTD can improve
the efficiency and boost PSNR by conducting temporal differ-
ence learning TDMs, which demonstrates difference operation
can reduce the high redundancy within satellite video and give
an accurate representation of motion information.

4) Effectiveness of Bidirectional Difference: We argue that
our L-TDM can leverage the long-range temporal information
from forward and backward segments. Therefore, we establish
two models for comparisons: (1) Model-6 with only forward
propagation; (2) Model-7 with only backward propagation.
The PNSR results are reported in Table. VI. In contrast to
a single forward architecture, the bidirectional configuration
yields a PSNR improvement of 0.23dB with only a marginal
increment in FLOPs. On the one hand, it demonstrates
that forward and backward features can provide mutually

TABLE V
ABLATION EXPERIMENT ON THE EFFECTIVENESS OF DIFFERENCE

OPERATION. RESULTS ARE CALCULATED ON SCENE 2
OF JILIN-T IN THE Y CHANNEL

TABLE VI
ABLATION EXPERIMENT ON THE EFFECTIVENESS OF BIDIRECTIONAL

DIFFERENCE. RESULTS ARE CALCULATED ON SCENE 2
OF JILIN-T IN THE Y CHANNEL

TABLE VII
ABLATION EXPERIMENT ON THE EFFECTIVENESS OF DIFFERENCE

COMPENSATION UNIT. RESULTS ARE CALCULATED IN
SCENE-2 OF JILIN-T IN THE Y CHANNEL

TABLE VIII
ABLATION EXPERIMENT ON THE EFFECTIVENESS OF HYBRID

ATTENTION RECONSTRUCTION. RESULTS ARE CALCULATED IN
SCENE-2 OF JILIN-T IN THE Y CHANNEL

complementary information. On the other hand, it emphasizes
our capability to capture cross-segment information through
our bidirectional difference operation.

5) Effectiveness of Difference Compensation Unit: The
restored HR target frame is required to maintain the spatial
consistency of the LR target frame. Although S-TDM and
L-TDM are capable of modeling temporal information for
compensation, we still need to guide the S-TDM and L-TDM
in focusing on valuable compensation while minimizing mis-
alignment interference. In light of this, Model-8 is introduced.
In this model, the Difference Compensation Unit (DCU)
is omitted, and instead, the temporal compensated feature
is directly concatenated with the spatial feature for spatial-
temporal fusion. The results, as listed in Table. VII, indicate
that DCU can explore more useful temporal information to
improve spatial fidelity.

6) Effectiveness of Hybrid Attention Reconstruction: In our
LGTD, two potent attention mechanisms are incorporated for
the final reconstruction. We establish a baseline model that
employs an equivalent count of residual blocks for recon-
struction. However, due to the entanglement of short-term and
long-term temporal information in the compensated feature,
traditional residual blocks face challenges in handling such
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complex distributions. Model-10, which exclusively employs
long-term attention, and Model-11, which solely focuses on
short-term information, both encounter limitations by only
partially addressing local and global redundancies. In sum-
mary, our hybrid attention emerges as a successful strategy
for reconstructing temporal information for better restoration.

V. CONCLUSION

In this paper, we propose a Local-Global Temporal Differ-
ence learning network (LGTD) to realize the short-term and
long-term temporal compensation for satellite VSR. To explore
the local temporal information, we proposed to compute the
frame-wise RGB difference between adjacent frames and
supply short-term temporal representation to the target feature
in a two-stage manner. To exploit the long-range depen-
dency in the entire frame sequence, we design a bidirectional
long-term temporal difference modeling branch. The holistic
temporal difference is conducted on the smoothed forward and
backward features to reduce the high redundancy. Then, the
activated long-term attention is used to modulate the smoothed
feature for compensation. Furthermore, we devise a differ-
ence compensation unit (DCU) to mitigate the misalignment
of temporal difference learning. Extensive experiments on
five mainstream satellite videos demonstrate our LGTD can
recover high fidelity compared with state-of-the-art methods.

Although the proposed TDMs could deliver favorable tem-
poral compensation, reconstructing high-quality target frames
from local and global temporal compensated features remains
a challenging problem. This paper employed a hybrid atten-
tion mechanism for the final reconstruction, which combines
self-attention and channel attention for effective restoration.
In spite of achieving decent performance, the hybrid attention
increases the number of parameters dramatically. In future
work, we plan to design a lightweight attention mechanism to
realize the final reconstruction. This will allow us to maintain
the capability of reconstructing local and global compensation
while reducing the model size for more practical deployment.
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