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Abstract—How to aggregate spatial-temporal information
plays an essential role in video super-resolution (VSR) tasks.
Despite the remarkable success, existing methods adopt static
convolution to encode spatial-temporal information, which lacks
flexibility in aggregating information in large-scale remote sens-
ing scenes, as they often contain heterogeneous features (e.g.,
diverse textures). In this paper, we propose a spatial feature
diversity enhancement module (SDE) and channel diversity
enhancement module (CDE), which explore the diverse repre-
sentation of different local patterns while aggregating the global
response with compactly channel-wise embedding representation.
Specifically, SDE introduces multiple learnable filters to extract
representative spatial variants and encodes them to generate a
dynamic kernel for enriched spatial representation. To explore
the diversity in the channel dimension, CDE exploits the discrete
cosine transform to transform the feature into the frequency
domain. This enriches the channel representation while mit-
igating massive frequency loss caused by pooling operation.
Based on SDE and CDE, we further devise a multi-axis feature
diversity enhancement (MADE) module to harmonize the spatial,
channel, and pixel-wise features for diverse feature fusion.
These elaborate strategies form a novel network for satellite
VSR, termed MADNet, which achieves favorable performance
against state-of-the-art method BasicVSR++ in terms of average
PSNR by 0.14 dB on various video satellites, including JiLin-1,
Carbonite-2, SkySat-1, and UrtheCast. Code will be available at
https://github.com/XY-boy/MADNet

Index Terms—Video super-resolution, dynamic convolution,
frequency analysis, remote sensing.

I. INTRODUCTION

V IDEO satellite, one of the promising earth observation
techniques, has recently attracted increasing attention
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due to its dynamic observation capability. Compared to tra-
ditional static remote sensing images, video satellites could
record specific areas by adjusting the optical axis of satellite
sensors, providing continuous observation for various appli-
cations, such as object tracking [1], classification [2], [3],
segmentation [4], [5], [6], etc. However, videos captured from
satellite platforms face complex degradation [7], [8], e.g.,
platform tremors and scattering. Moreover, to stabilize the
ultra remote transmission between satellite and ground station,
satellite video often suffers from compression and downsam-
pling, resulting in undesirable high-frequency information loss.
To this end, it is essential to develop a practical scheme,
like super-resolution (SR) technologies, to improve the spatial
resolution of satellite videos.

SR is a long-standing ill-posed issue, which aims to
reconstruct a high-resolution (HR) output from the given low-
resolution (LR) observation [9], [10], [11], [12]. Compared
to single-image super-resolution (SISR), VSR is more com-
plicated as it requires aggregating both spatial and temporal
information from misaligned video frames. Prior to deep
learning, conventional model-based methods rely on specific
assumptions and priors, e.g., non-local mean [13] and Bayesian
[14], to address complex motions. However, these handcrafted
priors are of limited representation ability, especially for highly
complex and varied motion scenarios.

With the great success of deep learning in a variety
of areas [15], [16], [17], SR algorithms based on deep
learning are studied extensively. Researchers promote further
progress in innovative architectures and training practices for
VSR and show considerable superiority over conventional
algorithms in visual quality improvement [18], [19], [20],
[21]. For example, prior works often exploit sliding-window
fashion [18], [22], [23], [24] to explore useful redundancy
information. Since the accessible information is limited in
the local neighborhood, the potential complementarities in
the global respective field have been barely explored. More
recently, the recurrent network [20], [25], [26] has been
proposed to aggregate spatial-temporal information sequen-
tially. Among them, the bidirectional propagation scheme
[19], [27], [28] has demonstrated impressive performance in
simulating the temporal motion. They use globally-shared
convolution to encode spatial-temporal context for feature
propagation.

Nevertheless, while they have demonstrated favorable per-
formance, some potential problems still exist in large-scale
earth observation scenarios, making VSR more challenging.
Firstly, as shown in Fig. 2, there exists spatial diversity of

1941-0042 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on March 22,2025 at 04:56:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9533-8917
https://orcid.org/0000-0001-7140-2224
https://orcid.org/0000-0002-4055-7503
https://orcid.org/0000-0001-6757-9051
https://orcid.org/0000-0002-3583-959X
https://orcid.org/0000-0002-9097-2318
https://github.com/XY-boy/MADNet


XIAO et al.: MULTI-AXIS FEATURE DIVERSITY ENHANCEMENT FOR REMOTE SENSING VIDEO SUPER-RESOLUTION 1767

Fig. 1. Parameters (M) and PSNR (dB) performance comparison. Our
MADNet outperforms state-of-the-art VSR methods with a favorable model
size. Comparisons are conducted on the JiLin-1 test set.

observed objects, which require heterogeneous representa-
tion for accurate reconstruction, but are barely explored.
The reason lies in that the existing VSR methods encode
spatial information via static and spatially invariant convolu-
tions, resulting in limited capability to represent various spatial
patterns in remote sensing scenarios. Secondly, the pooling
operation in attention operation inevitably causes high-
frequency information loss during feature propagation.
The efforts for inter-channel relationship learning could facili-
tate the global feature fusion, but the pooling operation learns
the scalar representation of a channel, making it hard to well
capture complex information for various inputs. Therefore, a
natural question arises: whether a more elaborate framework
be developed to encode the diverse spatial patterns while
preserving the high-frequency textures for accurate spatial-
temporal aggregation?

To tackle these limitations, we introduce the diverse rep-
resentation of spatial features and harmonize it with the
frequency-based multi-spectral channel fusion to explore
spatial-temporal information. Specifically, we propose a novel
multi-axis feature diversity enhancement module (MADM).
Its key component involves three branches to synergistically
encode spatial-temporal information: 1) a spatial diversity
enhancement (SDE) branches with a set of learnable filters to
explore various local patterns; 2) a channel diversity enhance-
ment (CDE) module that replaces the pooling operation with
the discrete cosine transform (DCT) to boost the frequency
representation in the channel dimension; 3) an auxiliary
branch (Aux) that exploits lightweight static convolution to
extract spatially invariant features. Unlike previous works that
employ dynamic convolution to encode spatial features, we
integrate the diverse spatial representation for high-quality
feature embedding, followed by the learnable fusion coef-
ficients to achieve adaptive spatial-temporal aggregation. In
this manner, the diverse feature patterns are effectively fused
with the corresponding weights. By parallel incorporating
the proposed SDE, CDE, and Aux into MADM, the spatial
variant, frequency diversity, and invariant patterns can be fully
explored to produce an enhanced heterogeneous feature repre-

Fig. 2. Three typical diversities of observed objects: (a) category diversity
(e.g., urban buildings, forests, airplanes), (b) scale diversity (e.g., varying sizes
of airplanes), and (c) texture diversity (e.g., smooth surface vs. irregular stripe
patterns). Satellite imagery is from Carbonite-2.

sentation. These strategies form a novel and effective remote
sensing VSR framework, termed MADNet, which achieves
state-of-the-art performance on four mainstream satellite video
benchmarks.

To sum up, the contributions of this paper are as follows:
1) We propose a novel multi-axis feature diversity enhance-

ment network (MADNet), which explores the diverse
spatial and channel feature representation for high-
quality remote sensing VSR tasks.

2) We construct the SDE and CDE to boost the feature
representation. The former explores the spatially-variant
information in satellite videos via a series of learnable
kernel bases and linearly fusing design. The latter learns
the inter-frequency correlations in the frequency domain
with DCT, which helps to preserve more high-frequency
cues during long-range propagation.

3) Extensive experiments on four video satellites demon-
strate the favorable VSR performance of MADNet,
surpassing the SOTA BasicVSR++ by 0.24dB on the
JiLin-1 dataset, as shown in Fig. 1.

The remainder of this paper is organized as follows:
Section II reviews the progress of natural and remote sens-
ing VSR, as well as some related works to this study.
Section III presents implementation details of the proposed
MADNet. Section IV contains rigorous experiments and
ablation analysis, and we summarize the whole paper in
section V.

II. RELATED WORK

A. Natural Video Super-Resolution

The key to VSR lies in how to explore spatial-temporal
information. Broadly, existing VSR methods can be divided
into two categories: sliding-window and recurrent methods.
Here, we initially review sliding-window VSR approaches that
explore accessible information within a local window. Then,
we introduce recurrent VSR models, where global redundancy
can propagate sequentially.
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1) Sliding-Window Methods: Most early studies utilized
window sliding to aggregate information from multiple neigh-
boring frames to a target frame. They generally follow the
following paradigm: alignment, fusion, and reconstruction.
Depending on the alignment process, these studies can be fur-
ther categorized into explicit and implicit alignment methods.
The former usually utilizes optical flow warping to realize
frame or feature-wise compensation. To generate accurate
optical flows, various methods have been adopted, such as
numerical solutions [29], [30], pre-trained models [31], [32],
[33], and learnable networks [34], [35]. Huang et al. [31]
compensated the target images with a total variation-based
optical flow strategy. Ilg et al. [32] introduced the Druleas
algorithm to estimate the flow maps. However, they face
harsh iterative solving processes and are time-consuming.
Wang et al. [35] developed a learnable sub-network to predict
the latent high-resolution optical flows, thus providing more
HR cues for compensation. Shi et al. [36] directly computed
optical flows from the pre-trained SPyNet [33], which offers
decent performance and efficiency.

Implicit alignment methods typically incorporate the align-
ment process into adaptive convolution kernels, with remark-
able success in 3D convolution [22], [37], deformable
convolution [18], [38], and non-local convolution [23], [39].
Jo et al. [22] proposed directly learning 3D upsampling filters
to upscale LR frames to the HR space. Wen et al. [37]
proposed a spatio-temporal 3D convolution to realize adaptive
alignment. Tian et al. [38] predicted offset parameters to guide
the deformable convolution process. Wang et al. [18] put
forward a pyramid structure to generate accurate offsets. Some
works integrated optical flow into deformable convolution to
tame the training difficulties. Yi et al. [39] employed non-
local convolution to aggregate global redundancy. Recently,
Mei et al. [23] further designed an improved multi-memory
non-local attention to cash more useful information.

In summary, despite achieving impressive success, these
methods neglect the potential information available in long-
distance frame sequences, thus reaching a performance
plateau.

2) Recurrent Methods: Due to its recurrent nature, the
recurrent approach allows for sequential information propaga-
tion, mitigating the aforementioned issues comfortably. Based
on the propagation direction, they can be grouped into two
types: unidirectional and bidirectional approaches. The for-
mer often propagates spatial-temporal information in a single
direction. Sajjadi et al. [25] proposed to exploit the previous
super-resolved HR frame to reconstruct the next LR frame.
Isobe et al. [20] proposed a detailed persevering block to alle-
viate the error accumulation in recurrent structure. However,
single-direction propagation leads to imbalanced information
utilization, as early frames naturally have insufficient available
information.

The bidirectional propagation model propagates the for-
ward and backward information independently, making the
propagation mode effective. Chen et al. [19] investigated the
generic framework of VSR and proposed a BasicVSR model
that adopts bidirectional propagation. By incorporating the
information-refill strategy, they further put forward IconVSR.

Later, they developed a second-order propagation strategy and
proposed BasicVSR++. Recently, Liu et al. [28] proposed
trajectory-aware attention, which grasps global dependence via
the self-attention mechanism.

To sum up, the recurrent approach can fully utilize long-
distance information and achieve state-of-the-art (SOTA)
fashion. Nevertheless, they all use static convolution (e.g.,
residual block) to encode spatial-temporal information dur-
ing propagation, lacking inadequate consideration of feature
diversity in remote sensing scenarios. This weakness results
in suboptimal feature representation, making spatial-temporal
aggregation less effective.

B. Remote Sensing Video Super-Resolution

Currently, VSR for satellite video is in its infancy. Early
works [40], [41], [42] usually super-resolve satellite video
with SISR models, lacking enough exploration in the spatial-
temporal dimension. Subsequently, some VSR methods began
to appear. Typically, more efforts have been paid to con-
sider the unique characteristics of remote sensing imagery
to enhance the feature representation capability. Liu et al.
[43] choose to realize alignment using patch similarity as
pixel-wise redundancy is hard to extract in satellite videos.
Later, they developed a practical scheme for satellite VSR
under multiple degradations [44]. He and He [45] equipped
the 3D convolution with multi-scale design, enhancing the
multi-scale diversity. Similarly, Xiao et al. [46] proposed
a multi-scale deformable convolution alignment module to
explore the multi-scale redundancy in satellite videos. They
also proposed to achieve efficient alignment between satellite
video frames via the straightforward temporal difference [24].
Recently, Ni and Zhang [47] adopted deformable convolution
and proposed a continuous-scale VSR network.

Nevertheless, all these methods adopt the window-sliding
fashion, which is insufficient in capturing valuable long-
distance dependency. In this paper, we proposed a recurrent
framework for satellite VSR and focused on enhancing the
feature diversity to boost the spatial-temporal aggregation
performance for better reconstruction.

C. Dynamic Networks

To increase the feature diversity, another line of research
attempted to develop dynamic networks to aggregate features
adaptively. Bako et al. [48] proposed a kernel prediction
network to make filtering kernel more complicated and general
by estimating the local weighting kernels. Mildenhall et al.
[49] introduced the idea of predicting spatially varying kernels
in denoising tasks. Recently, Jiang et al. [50] exploited a
smaller set of spatially-varying convolution kernels generated
from an efficient predictor to reach a compromise between
static and dynamic, as kernel prediction is of high model
complexity.

Despite they can enhance the feature diversity, they often
use complex network design to estimate the dynamic convo-
lutional filters, which inevitably increase the computational
budgets. Moreover, dynamic networks face harsh optimization
problems, making them less efficient in VSR tasks. In contrast,
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Fig. 3. An overall of the proposed MADNet. The red and green arrows denote backward and forward propagation, respectively. The blue arrows mean
optical flows. MADNet adopts the generic components of BasicVSR, where fB, fF , fU , and fW denote the forward and backward propagation modules, the
upsampling module, and feature-wise flow warping, respectively. The purple block denotes the proposed multi-axis feature diversity enhancement module
(MADM). Channel Diversity Enhancement (CDE), Spatial Diversity Enhancement (SDE), and an auxiliary (Aux) branch process the input feature parallelly.
The outputs of these branches are merged and used as an activation to rescale the input feature. DWConv means depth-wise convolution.

we aggregate a set of learnable kernels with linear fusion,
which maintains the merits of spatially invariant exploration
while greatly reducing model consumption. In addition to
spatial diversity, we also perform diversity in the frequency
domain, achieving multi-axis diversity enhancement.

III. PROPOSED METHOD

In this section, we first present an overview of the proposed
MADNet. We then introduce the key components of the multi-
axis diversity enhancement module (MADM), i.e., spatial
diversity enhancement (SDE) that learns spatially-variant pat-
terns, and channel diversity enhancement (CDE) that explores
diverse inter-frequency correlations. Finally, we elaborate on
the design pipeline of MADM based on the SDE and CDE.

A. Overview

The overall flowchart of our proposed MADNet is illustrated
in Fig. 3. Given an LR satellite video input, residual blocks
are adopted for feature extraction. Although residual blocks
neglect the feature diversity, they can encode the vital in-
variant representation. We adhere to the generic framework
of IconVSR [19], employing bidirectional propagation through
the backward ( fB) and forward ( fF) propagation modules. Note
that MADM is integrated into both fB and fF . Within MADM,
diversity enhancement takes place across multiple branches,
including SDE, CDE, and the Auxiliary branches. Following
the multi-axis exploration, the outputs are aggregated and
utilized to modulate the shallow feature to enhance the repre-
sentation of spatio-temporal features. The widely-used flow
wrapping ( fW ) is applied to align with the previous state
hi−1, where the optical flow maps are generated by pre-trained
SPyNet [33]. The compensated state is then concatenated with
the enriched spatio-temporal feature for the upcoming deep

feature extraction. We employ a residual block and a pixel-
shuffle layer for the final upsampling ( fU) process.

B. Spatial Diversity Enhancement Module

How to gather enriched spatial-temporal representations
holds significant importance in VSR tasks. Most prior works
rely on spatially invariant convolutions to encode features,
where the kernel weights are fixed throughout the process.
However, they fail to adaptively grasp the spatial diversity
inherent in remote sensing scenarios. In contrast, dynamic
convolution introduces a mechanism where the convolutional
kernels adapt based on the input features, enabling the model
to learn different filters for different regions of the input. To
this end, we propose a spatial diversity enhancement module
to characterize representative spatial patterns that employs var-
ious learnable filters to capture heterogeneous spatial patterns.
We then fuse these spatial patterns adaptively to learn distinct
convolution weights for individual pixels, thus facilitating the
representation of spatial diversity.

The proposed SDE diverges from existing dynamic con-
volution approaches [50], [51] or kernel prediction networks
[48] by not directly predicting all kernel weights. Instead,
the aggregation weights of the SDE module are determined
through spatially adaptive fusion of shared kernel bases.
Consequently, our SDE module is lighter and more straight-
forward to optimize. Ablation studies in Table V confirm the
effectiveness of the proposed design choices against dynamic
convolution.

Specifically, as shown in Fig. 4(a), given a shallow feature
Xin ∈ R

h×w×c, where h, w, and c respectively represent the
height, width, and channel numbers, our SDE set N learnable
filters to capture diverse spatial patterns. Here, K ∈ RN×c×k2

comprises N convolution kernels with a kernel size of k.
To incorporate spatial diversity extracted by these filters,
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Fig. 4. The details of the proposed SDE and CDE. SDE receives an input Xin, then SDE predicts N feature maps to fuse diverse filters, generating an
enriched convolution weight for a specific location. The fused filters can adaptively grasp the spatial diversity of the encoded input feature to generate a
spatially-invariant output Xse. On the other hand, with the input Xin, CDE starts with diverse DCT bases to generate diverse frequency components. It then
utilizes a fully connected layer to produce channel activation, thus adaptively enhancing the channel-wise diversity in the frequency space.

we adaptively predict N feature maps as fusion coefficients
W ∈ RN×h×w using a lightweight 3 × 3 grouped convolution
(GConv). This approach enables the adaptive combination of
diversity filters to derive an enriched convolution weight for
each spatial location.

In particular, for a spatial location (i, j), the corresponding
value of the n-th feature map in the feature map W is used
to scale the n-th filter. Mathematically, the enriched weight E
can be obtained as follows:

E(i, j) =

NX
n=1

ωn(i, j) · kn, (1)

where kn represents the n-th learnable kernel, and ωn(i, j)
denotes the n-th filter fusion coefficients at location (i, j).

To further transform the features, the input feature Xin is
converted to an embedding Xs by a 5×5 DWConv for adaptive
convolution with enriched convolution weight E. After the
convolution operation ⊗, the spatially enhanced feature Xse

at location (i, j) can be written as

Xse(i, j) = XR
s (i, j) ⊗ E(i, j), (2)

where XR
s (i, j) is a k×k convolution sampling region surround-

ing location (i, j).

C. Channel Diversity Enhancement Module

Previous works often exploit channel attention (CA) mech-
anisms [55] to explore the intra-channel relationship. Never-
theless, the global pooling operation used in CA inevitably
discards the high-frequency diversity of feature maps, resulting
in suboptimal performance in representing the channels. As
demonstrated in previous works [56], transforming spatial
features into the frequency domain can significantly aid in
reconstructing high-quality textures. However, non-parametric
frequency transformation methods, such as the fast fourier
transform (FFT), are often sensitive to noise and variations
in image scale factors [57]. To address these issues and
more effectively compress channels while preserving impor-
tant frequency patterns, we propose utilizing the discrete

cosine transform (DCT), which offers a more robust and
efficient approach for capturing these frequency components.
As illustrated in Fig. 4(b), given an input feature Xin, it is split
into n chunks in the channel dimension. Denote the i-th part
as Xi ∈ RH×W×d, where d = C/n.

DCT has been widely used to convert spatial features to the
frequency domain. Mathematically, the two-dimensional (2D)
DCT can be written as:

T i, j
h,w = cos

�
πh
H

�
i +

1
2

��
cos

�
πw
W

�
i +

1
2

��
, (3)

where H and W are the height and width of input feature
Xin. For simplicity, we denote d-th 2D DCT base as Tk.
By applying Tk to Xin, we obtain the transformed frequency
spectrum, which means:

Freqk =

H−1X
h=0

W−1X
w=0

Xk
h,wT k

h,w, (4)

where Freqk is the d dimensional flatten vector after compres-
sion.

Ultimately, the multiple vectors yield from diverse fre-
quency components are merged and activated as:

attc = σ(FC([Freq1, Freq2, · · · , Freqn])), (5)

where σ is sigmoid function, FC means a fully connected
layer and [·] presents channel-wise concatenation.

D. Multi-Axis Diversity Enhancement Module

To comprehensively encode diversity features for satellite
VSR, based on the SDE and CDE, we designed a multi-axis
diversity enhancement module (MADM) to handle the spatial
and channel heterogeneous information. As shown in Fig. 3,
MADM initiates with a 5× 5 DWConv for feature extraction.
Subsequently, SDE, CDE, and an auxiliary branch explore
spatial variant, channel diversity, and spatially-invariant fea-
tures, respectively. In addition to diverse spatial and frequency
patterns, spatially-invariant features are also vital for recon-
struction. To introduce static spatial-temporal representations
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TABLE I
QUANTITATIVE COMPARISONS IN TERMS OF PSNR AND SSIM. EIGHT SCENES OF JILIN-1 ARE SELECTED AND THE RESULTS ARE CALCULATED ON

THE LUMINANCE CHANNEL (Y). THE BEST AND SECOND PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE II
QUANTITATIVE COMPARISON IN TERMS OF PSNR AND SSIM. THE FLOPS ARE COMPUTED ON AN INPUT TENSOR WITH THE SIZE OF 1×N×3×160×160,

WHERE N MEANS THE NUMBER OF INPUT FRAMES. NOTE THAT TTVSR† AND RVRT* DENOTE WE RETRAIN TTVSR AND RVRT BY SETTING
THE PROPAGATE LENGTH TO 15 AND 16, RESPECTIVELY. TO SAVE GPU MEMORY MAINTENANCE, WE SET THE EMBEDDING DIMENSION

TO 96 IN RVRT*. THE BEST AND SECOND PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

into MADM, we integrate a 1 × 1 convolution followed by
a 3 × 3 convolution in the auxiliary branch. This lightweight
design enables MADM to explore both static and dynamic
dependencies, thus enhancing the spatial-temporal aggregation
for accurate VSR. Intuitively, addition and multiplication are
commonly used operations for feature aggregation. However,
the diversity from each branch still exists a pattern gap.

Instead of merely aggregating the output of these branches
and supplementing it to Xin with a global connection, we opt
for a progressive aggregation approach in two stages. Later,
the second stage employs point-wise multiplication to modu-
late the input feature. This two-stage aggregation introduces
additional non-linear activation in the MADM module.

IV. EXPERIMENT AND DISCUSSION

A. Satellite Video Datasets and Evaluation Metrics

1) Satellite Video Datasets: To comprehensively evalu-
ate the VSR performance on remote sensing scenarios, we

collected extensive satellite videos from four mainstream
video satellites, including JiLin-1, Carbonite-2, SkySat-1, and
UrtheCast. The original frame size varies from 1920 × 1080
to 4096 × 2160, and the duration is from 12s to 60s. Fol-
lowing previous work [46], we extract 189 satellite video
clips from JiLin-1 to build our training set, termed JiLin-
189, where each sub-clip contains 100 consecutive frames
with a resolution of 640 × 640. Besides model training, eight
scenes are randomly cropped from JiLin-1 satellite videos for
model testing. Note that the training and test clips are captured
from different ground regions and do not overlap with each
other.

Additionally, we further randomly crop 10, 6, and 12 scenes
from Carbonite-2, SkySat-1, and UrtheCast, respectively, to
form another three test sets, where each video includes 100
frames of image size 512 × 512. To sum up, a total of 36
scenes from four video satellites are used to evaluate VSR
performance. The original video clips are downsized to 1/4 of
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TABLE III
QUANTITATIVE RESULTS IN TERMS OF LPIPS [62]. THE BEST AND SECOND PERFORMANCES ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE IV

QUANTITATIVE COMPARISON ON REDS4 [63] AND VID4 [64] IN TERMS
OF PSNR AND SSIM. THE BEST AND SECOND-BAST PERFORMANCES

ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY

the original size using bicubic interpolation, generating paired
LR-HR satellite videos for ×4 VSR.

2) Evaluation Metrics: Similar to prior works [59], [60],
the widely used Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity index (SSIM) [61] are adopted to mea-
sure the fidelity between reconstructed and ground-truth
videos. Besides, the Learned Perceptual Image Patch Simi-
larity (LPIPS) [62] is used to evaluate the perceptual quality
of restored videos. The lower LPIPS values indicate better
perceptual performance. Notably, the PSNR and SSIM are
calculated on the Y channel of the YCbCr image space.

B. Implementation Details

1) Model Details: MADNet only implements ×4 VSR.
The inter-channel number of our MADNet is set to 64. Note
that we adopt the pre-trained SPyNet [33] to estimate the
optical flow maps. In addition to SPyNet, our MADNet does
not involve any pre-training process. Each forward ( fF) and
backward module ( fB) contains 7 residual blocks. In the SDE,
the number of learnable filters is set to 128, and the kernel size
is 3 × 3. As for CDE, we select four DCT bases for channel
compression, which means we split the feature into 4 groups
in the channel dimension. The most important 32 channels
are maintained in CDE. The channel number of the two fully
connected layers is 256 and 64, respectively.

2) Training Details: We adopt the Adam optimizer with
β1 = 0.9 and β2 = 0.99 for model training. The batch size is
set to 4. The learning rate is initialized to 2×10−4 and updated
by the cosine annealing schedule. Following previous works,
we employ 15 video frames for bidirectional propagation. The
input size of the LR videos is 64×64. During model training,
data augmentation is performed by random rotation (90Â◦,
180Â◦, 270Â◦) and flipping (vertical or horizontal). MADNet

is trained with a total of 100,000 iterations to reach robust con-
vergence. The widely used Carbonnier penalty loss is adopted
as the training object. In particular, L =

p
||xt − yt ||

2 + ε2,
where ε = 10−3. Our MADNet is implemented with the
PyTorch framework and trained on a single NVIDIA RTX
3090 GPU with 24GB memory and a 3.40 GHz AMD Ryzen
5700X CPU. It takes nearly three days to train our MADNet.

C. Comparison With State-of-the-Art Methods

To evaluate the performance of the proposed MADNet, we
compared MADNet with representative approaches, including
Bicubic Interpolation, sliding-window VSR methods (DUF-
52L [22], RBPN [30], SOF-VSR [35], EDVR-L [18], MuCAN
[52], MSDTGP [46], TGA [53], MANA [23], LGTD [24]),
and recurrent VSR models (RRN [26], BasicVSR [19], Icon-
VSR [19], TTVSR [28], BasicVSR++ [27], RVRT [54],
and IA-RT [58]). For a fair comparison, we retrained these
methods from scratch on the JiLin-189 training set following
their official implementation settings. Notably, limited by the
CUDA memory, the frame length used for propagation of
TTVSR and RVRT is set to 15 and 16, respectively, and we
denote them TTVSR† and RVRT*. Following the test setting
in DUF-52L [22], 8 pixels on the boundary are cropped before
metric calculation.

1) Quantitative Comparison: The PSNR/SSIM results for
eight scenes in the JiLin-1 test set are listed in Table. I. From
Table I, we can see that our MADNet outperforms the SOTA
sliding-window and recurrent VSR methods across all eight
scenes. For instance, MADNet exhibits a substantial lead over
BasicVSR++ in Scene-2 (24.29dB vs. 33.95dB), indicating its
superior VSR performance on satellite videos.

Moreover, the average PSNR/SSIM results on JiLin-1,
Carbonite-2, SkySat-1, and UrtheCast are reported in Table II,
along with input frame number, parameters, and FLOPs.
From this table, it is observed that MADNet consistently
demonstrates favorable performance across various video
satellite platforms, which demonstrates the generalization and
robustness of MADNet. In particular, MADNet outperforms
EDVR-L, a large-capacity sliding-window approach, by up to
0.84dB in PSNR on the Carbonite-2 test set while employing
68% fewer parameters. In the SkySat-1 test set, MADNet
surpasses the impressive recurrent approach BasicVSR++ in
PSNR (35.11dB vs. 34.99dB) with fewer parameters (6.7M
vs. 7.3M) and FLOPs (2444.5G vs. 2719.4G). When com-
pared to the SOTA method IconVSR, MADNet demonstrates
high performance with gains of 0.45dB, 0.18dB, 0.03dB, and
0.39dB on JiLin-1, Carbonite-2, UrtheCast, and SkySat-1 test
sets, respectively. Due to the limited generalization capability
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Fig. 5. Qualitative comparisons. Scene-3 (top) and Scene-2 (bottom) are selected from JiLin-1 test set. Zoom in for better visualization.

and the domain gap between Jilin-1 and Urthecast, MADNet’s
performance is less pronounced compared to BasicVSR++

on UrtheCast. These results demonstrate the favorable per-
formance and generalization capability of MADNet across
various video satellite platforms. Note that both IconVSR
and BasicVSR++ employ static convolution for aggregating
spatial-temporal information, overlooking the feature diversity
present in satellite videos. Our MADNet benefits from a more
enriched spatial-temporal feature by SDE and CDE, leading
to superior VSR performance.

The LPIPS results are reported in Table. III. From
Table III, it can be observed that our MADNet achieves
the best performance on all test sets. For instance, MADNet
achieves 0.1283 in LPIPS on average, which is better than
EDVR-L and BasicVSR++ by 0.0268 and 0.0058, respec-
tively. These observations highlight the favorable capability
of our MADNet in recovering videos with high perceptual
quality.

Moreover, we further retrained MADNet on REDS [63]
to evaluate its performance on natural video benchmarks
[64]. Table IV presents a quantitative comparison with SOTA
VSR methods. Specifically, for first-order propagation mod-
els, MADNet achieves the best performance. It outperforms
IconVSR by 0.76dB on PSNR and 0.0136 on SSIM for
REDS4, demonstrating its effectiveness in natural VSR tasks.
This is because recovering high-frequency information is also
crucial for natural VSR. Benefiting the global frequency
exploration of CDE, our MADNet could restore more sharp
cues of natural videos, thus achieving favorable reconstruction
results. Compared to the second-order propagation approaches
BasicVSR++, our MADNet exhibits superior accuracy in
the configuration of first-order propagation. Yet MADNet

is slightly below RVRT on Vid4 (27.86dB vs. 27.99dB),
primarily due to challenges in information exchange, limiting
the benefits of accurate propagation.

2) Qualitative Comparison: In Fig. 5, Fig. 6, and Fig. 7,
we provide visual comparisons on various satellite videos
to evaluate the qualitative performance of our MADNet.
Specifically, as shown in Scene-3 in Fig. 5, MADNet exhibits
superior visual quality in recovering details of lines on the
ground. BasicVSR++, relying on static convolution for feature
encoding, tends to lose high-frequency information during
long-distance propagation. In contrast, MADNet explores
the diversity in the frequency space, providing more high-
frequency cues for better reconstruction. Similarly, in Scene-2
of JiLin-1, MADNet produces clearer and sharper details
of the number ‘27’ on the ground compared to other VSR
methods. This suggests that both sliding-windows methods
and recurrent models are inadequate in providing fine-grained
spatial information, particularly in capturing spatial diversity
in satellite videos. The incorporation of MADM in MADNet
introduces additional heterogeneous features into the VSR
model, helping to recover diverse textures in remote sensing
scenarios.

As shown in Fig. 6, in Scene-2 of SkySat-1, only our
MADNet can recover the correct shape and boundary of
objects with spatial diversity. In this context, both EDVR-L
and BasicVSR++ produce blurry and inaccurate results. More-
over, as shown in Scene-6 of SkySat-1, MADNet successfully
preserves the reliable distribution of edges on the building,
while other approaches fail to recover the high-frequency
information. In Fig. 7, MADNet consistently produces visu-
ally pleasing results compared to other SOTA methods,
offering rich spatial details and high-frequency information.
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Fig. 6. Qualitative comparisons. Scene-4 and Scene-7 are from Carbonite-2 test set while Scene-2 and Scene-6 are from SkySat-1 test set. Zoom in for
better visualization.

Fig. 7. Qualitative comparison. Scene-3 is from the UrtheCast test set. Zoom in for better visualization.

Fig. 8. Qualitative comparison of temporal profile. We record a row (red
line) and stack it across the timeline to observe the temporal changes. The
profile from BasicVSR++ produces a mixed motion pattern (red arrow), while
our MADNet exhibits distinctive motions and is close to ground truth. By
enhancing the feature diversity, the profile from MADNet exhibits clear details
(green arrow).

These visual results demonstrate the effectiveness of SDE in
enhancing the representation of different types of structures
and textures. Moreover, CDE indeed preserves the vital high-
frequency details by exploring the diversity in the frequency
domain.

To better evaluate the coherence and consistency of the
restored video over long-time series dynamics, we recorded a
line of pixels and stacked them on the timeline. The temporal
profile is shown in Fig. 8. MADNet demonstrates the ability to
generate precise long-term temporal distributions, emphasizing
the effectiveness of our MADM in accurate spatial-temporal
aggregation. We also evaluate the performance across the
entire frame index. The results are illustrated in Fig. 9. MAD-
Net consistently achieves the best performance over the entire
frame sequence, demonstrating its capability to aggregate
spatial-temporal information for accurate reconstruction.

Fig. 9. Quantitative comparison across frame index. The results are
conducted on Scene-1 of JiLin-1 test set. Our MADNet achieves consistently
superior performance on the entire frame.

D. Ablation Studies

This section gives extensive ablation experiments to demon-
strate the effectiveness of each component of MADNet. Note
that the PSNR is calculated on the JiLin-1 test set.

1) Effectiveness of Individual Components: To verify the
effectiveness of the main components in our MADNet, we
conduct various ablation studies by progressively incorpo-
rating CDE, SDE, and the auxiliary branch into MADM
and evaluate the PSNR performance. The quantitative results
are reported in Table VI. Compared to the Baseline model,
CDE and SDE contribute to a PSNR improvement of 0.24dB
and 0.27dB, respectively. contribute to a PSNR improvement
of 0.24dB and 0.27dB, respectively. The addition of the
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TABLE V

ABLATION OF SDE MODULE. THE PSNR IS TESTED ON THE JILIN-1 TEST
SET

TABLE VI

ABLATION ON INDIVIDUAL COMPONENTS OF MADNET

Fig. 10. Effect of hyperparameters in CDE and SED. (a) Different number
of learnable filters used in SDE. (b) Different number of DCT bases in CDE.
The PSNR is tested on JiLin-1 testset.

auxiliary branch results in a further 0.02dB improvement. As
Table VI suggests, the integration of CDE, SDE, and the auxil-
iary branch yields the best PSNR performance compared to the
Baseline (36.35dB vs. 35.90dB), with only a marginal increase
in parameters (6.43M vs. 6.68M) and FLOPs (2432.98G vs.
2444.54G).

2) Effectiveness of SDE: To validate the effectiveness of
conducting feature diversity enhancement in the spatial dimen-
sion, we perform the ablation study of SDE with different
variants. The quantitative results are listed in Table V. In par-
ticular, we remove the SDE to build a Baseline model. Then,
we equip the Baseline with dynamic convolution, revealing
a 0.04dB improvement, demonstrating the positive impact of
enhancing feature diversity. By comparing the second and third
rows in Table V, we can see that SDE outperforms dynamic
Conv by 0.15dB in PSNR, indicating that our learnable filter
can boost the spatial diversity representation. Besides, we
investigate the different number of learnable filters in SDE,
and the results are shown in Fig. 10. It can be found that when

TABLE VII

ABLATION OF CDE MODULE. THE PSNR IS TESTED ON THE JILIN-1 TEST
SET

TABLE VIII

EFFECT OF DIFFERENT FREQUENCY SELECTION METHODS USED IN CDE.
TOP-K MEANS WE RETAIN THE MOST IMPORTANT TOP K% FRE-

QUENCY SIGNALS ALONG THE CHANNEL DIMENSION

the number of filters increases, the diversity can be increased
progressively and reach a plateau after N = 32. We ultimately
set N = 128 as it delivers the best performance. Finally, we
incrementally added different DWConv, such as 3 × 3, 5 × 5,
7 × 7, and 9 × 9. Experimental results illustrate that DWConv
with 5 × 5 kernel achieves the best performance among other
kernels, illustrating a moderate kernel size is necessary for
spatial feature embedding.

3) Effectiveness of CDE: To evaluate the effectiveness of
channel diversity enhancement, we conduct 7 variants in
Table VII. For the study in Table VII, the Baseline model with
channel-wise diversity enhancement can achieve favorable
performance improvement. In comparing CA and CDE, our
CDE outperforms CA by 0.09dB in PSNR, demonstrating
the effectiveness of CDE in increasing the frequency diversity
for better performance. Inspired by the success of frequency
analysis in high-level vision tasks, we introduce frequency
channel attention [66] into VSR framework to explore the
high-frequency patterns. Considering the weak texture proper-
ties of remote sensing videos, we infer that excessive DCT
increases the latitude diversity of the channel but simulta-
neously introduces noise frequency signals. As illustrated in
Fig. 10(b), it can be observed that higher DCT numbers do
not necessarily lead to better performance in VSR tasks. In
contrast to the 16 DCTs used in [66], the proposed CDE
achieves optimal performance with only 4 DCTs (36.35 dB
vs. 35.31 dB). Ultimately, we chose N = 4 in our final CDE.
Additionally, we changed the kernel size of DWConv used
in CDE. The experimental results indicate that 7 × 7 kernel
size achieves the best PSNR performance, highlighting the
importance of a relatively large kernel size for channel feature
embedding.

Furthermore, different from the original FacNet, we inves-
tigated the impact of different frequency selection methods.
The results in Table VIII demonstrate that retaining only 16
channels [66] in the frequency domain tends to result in the
loss of critical high-frequency details, resulting in suboptimal
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TABLE IX
EFFECT OF DIFFERENT ENHANCEMENT STRATEGIES. THE PSNR RESULTS

ARE CALCULATED IN THE JILIN-1 TEST SET

Fig. 11. Effect of Multi-Axis Diversity Enhancement ( fMADM). The
contribution of fMADM is prominent in regions with sharp details, e.g., edge
and boundary. The high-frequency information from the additional fMADM
leads to favorable improvements.

Fig. 12. Feature visualizations. Without MADM, the feature experiences
blurry details and is not prominent across the entire feature. The feature
enhanced by SDE has sharper spatial details, as indicated by the red arrows.
The results with CDE activate more high-frequency parts, as indicated by the
red circles. The feature enhanced by full MADM is sharp and prominent in
fine details.

performance. Meanwhile, selecting all 64 channels introduces
undesirable interference signals. Our CDE obtains favorable
adaptation, making it applicable to remote sensing VSR tasks.

4) Different Enhancement Operation: To verify the two-
stage enhancement operation, we conduct different enhance-
ment operations in stage-1 and stage-2. Empirically, the
multiple outputs of Aux, SDE, and CDE can be merged and
supplied with addition or activation operations. As listed in
Table IX, Model-1 aggregates the outputs and adds them to
Xi. Due to the diversity gap between each branch, addition
yields the worst PSNR performance. Model-2 adopts point-
wise multiplication to fuse the diverse features and modulate
Xi with multiplication, achieving a 0.25dB improvement over
Model-1. Model-3 uses hybrid operations and is less effective
than Model-2. Combining addition and multiplication, our
MADNet can further boost PSNR performance by 0.03dB
compared to Model-2.

5) Feature Visualization: To better understand how SDE
and CDE work, we also visualize the intermediate feature

maps of MADNet. As shown in the 2nd and 5th columns of
Fig. 12, we observed that the feature map yielded with MADM
is cleaner than the feature without MADM. This demonstrates
that multi-axis feature diversity enhancement can significantly
reduce the noise in features and provide high-quality features
for propagation. Besides, as shown in the 3rd column, where
we delete CDE and only conduct spatial diversity exploration.
We can see that SDE excels at extracting homogeneous spatial
patterns (red arrows). Moreover, by comparing the 3rd and 4th
columns, we can find CDE succeeds in activating the high-
frequency counterparts of the feature map, as highlighted in
the red circle. These visualizations suggest that both SDE and
CDE effectively enhance feature diversity and provide high-
quality representations for improved reconstruction.

V. CONCLUSION

In this paper, we propose MADNet, a novel network
developed for satellite VSR. The key design of MADNet is
the multi-axis diversity enhancement module, which enhances
feature diversity by simultaneously exploring spatially-variant,
frequency diversity, and spatial-invariant patterns. To capture
various spatial contexts, the proposed SDE module introduces
a series of learnable filters to extract different spatial patterns
and fuse them adaptively to generate an enriched kernel
weight for feature encoding. Additionally, we devise a CDE
module, which converts the diversity analysis into the fre-
quency domain with discrete cosine transformation. Extensive
experiments on four satellite video benchmarks demonstrate
our MADNet achieves favorable performance against SOTA
sliding-window and recurrent VSR approaches, demonstrating
its superiority both quantitatively and qualitatively.

Despite achieving favorable results under bicubic degrada-
tion, the proposed MDANet may collapse in real-world scenes
with multiple degradations. Besides, the model complexity of
MADNet is still too large for real-time applications. In future
work, we plan to extend our MADNet to develop a generalized
VSR framework, which offers a broader investigation of real-
world satellite videos. Moreover, exploring efficient MADNet
would be an exciting direction, providing real-time inference
for onboard deployment.
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