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ABSTRACT 
 
Deep learning-based methods have shown superior 
performance in VSR tasks. However, satellite video frames 
are characterized by large width, low resolution, and lack of 
features. Consequently, the conventional VSR method is not 
suitable for satellite video. In this paper, a recurrent 
refinement network is proposed. Considering that the vast 
majority of remote sensing images belong to the static 
background, a single-image SR (SISR) method is first used 
to obtain high-resolution features for a specific target frame. 
To further complement the missing details, the network 
learns the complementary information enhanced by an 
Encoder-Decoder structure from adjacent frames to refine 
the results of SISR. To measure the contribution of different 
adjacent frames to the recovery of the target frame, a 
temporal attention mechanism is introduced in the final 
fusion stage. The experiment on the video data of Jilin-1 
demonstrates the effectiveness of our method. 
 

Index Terms— Satellite video, super-resolution, deep 
learning 
 

1. INTRODUCTION 
 
Super-resolution (SR) is a low-level computer vision task, 
which aims to recover the corresponding high resolution 
(HR) image from the low resolution (LR) image [1]. SR can 
be divided into single-image SR (SISR), multi-image SR 
(MISR), and video SR (VSR). This paper focuses on the 
VSR method by fusing complementary information 
generated by subpixel motion between adjacent frames. 
At present, most of the deep learning-based VSR method 
adopts the following procedure: sub-pixel alignment 
between frames, information fusion, and reconstruction. 
VESCPN [2] is the first end-to-end VSR method that 
simultaneously trains optical flow estimation and spatial-
temporal information fusion. Xue et al. [3] proposed 
TOFlow, which used optical flow to estimate motion 
information between reference frames and target frame and 
then used the estimated optical flow to distort reference 
frames to achieve motion compensation. The optical flow-
based method is called explicit motion compensation. 

However, the optical flow-based approach has a drawback: 
inaccurate optical flow estimation will lead to incorrect 
image distortion, and the frame misalignment gives the 
wrong information for subsequent fusions, resulting in poor 
reconstruction. Inspired by the deformable convolutional 
network, Wang et al. [4] proposed a VSR model with 
implicit motion compensation named EDVR. At first, the 
feature alignment is realized by introducing deformable 
convolution. Next, a spatial-temporal attention fusion 
module is used to fuse the aligned features. At last, 10 
residual blocks and the subpixel convolution are used to get 
the final SR frame. Note that EDVR is a state-of-the-art 
method. 
Compared with terrestrial video, satellite video can be more 
complicated, so the conventional VSR method cannot be 
applied directly. Firstly, satellite images have a vast width 
and contain more complex ground objects with multi scales. 
Secondly, the moving target is relatively small relative to 
the broad background and usually only occupies a small 
number of pixels in the image. Because of the low contrast 
and the pixel mixing at the edge of the object, it is difficult 
to distinguish the moving object from the background. 
Thirdly, due to the limitation of the resolution, remote 
sensing image lacks rich texture details, which makes it 
difficult to extract features. In a word, all the reasons 
mentioned above make satellite VSR a more challenging 
task. 
Considering the characteristics of satellite video data and 
the drawbacks of the work mentioned above, we propose a 
recurrent refinement network. First of all, the vast majority 
of remote sensing images belong to the static background, 
which does not need complex MISR methods for 
reconstruction. Instead, we only need to learn the missing 
details from adjacent frames and add them to the results of 
SISR to refine the frame texture details. Secondly, in remote 
sensing images, the motion target is too small and the 
motion information is too little. The calculation cost of 
deformable convolution is too high, so it is not suitable. 
Thus, we use optical flow to capture the motion information 
between the target frame and reference frames. To prevent 
incorrect alignment, we do not distort the reference frame. 
Instead, the target frame, reference frame and their 
corresponding optical flow are all input into the network, so 
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Fig. 1. The overall network structure of the proposed method 
 

 that the network can learn adaptively. In each refinement, 
the detailed features are enhanced through a deep Encoder-
Decoder structure. Each reference frame participates in a 
refinement once and gets an output, ultimately aggregating 
the outputs of each refinement to produce our final SR 
target frame. A temporal attention mechanism is introduced 
to modulate each refinement's output, and the experiment 
shows our method is superior to EDVR. 
 

2. METHODOLOGY 
 

2.1. Overview of network structure 
 

The overall structure of the proposed network is shown 
in Fig. 1. It can be seen that its core module is the refining 
module. Our network uses 7 consecutive frames as the input. 
We define the intermediate frame as the target frame 
(marked by a red box) and a total of 6 frames on the left and 
right as the reference frames (marked by a green box). Each 
reference frame participates in a refinement process, so a 
total of 6 refinement outputs ( )0,1, ,5iF i =   are obtained. 

Finally, ( )0,1, ,5iF i =   are combined to generate the SR 
frame corresponding to the target frame. 

For the convenience of explanation, we assume 7 
consecutive frames ( )1, ,7iI i =   as input, and 4I  is the 
target frame. Suppose that the input LR frame size is 
h w c× × , where 3c =  represents the number of RGB 
channels. The SR scale is set to r . The first refinement 
process is carried out as follows: firstly, PyFlow [5] is used 
to calculate the optical flow 1 4Flow →  between reference 

frame 1I  and the target frame 4I . Note that the number of 
optical flow channels is 2. Then, they are concatenated on 
the channel dimension to obtain the input of size 8h w× × , 
and a 3 3×  convolution is followed to obtain the LR 
features of size 256h w× × . And then, after the first 
residual block with deconvolution, we obtain the HR 
features with the size of ( ) ( ) 64h r w r× × × × . The LR frame 
with size 3h w× ×  is convolved with a 3 3×  convolution to 
obtain the LR features 0R  of size 64h w× × , then it will 
pass a SISR method named DBPN [6] which is widely used 
in recurrent structure to obtain HR features of size 
( ) ( ) 64h r w r× × × × . After that, we subtract this HR 
features from the HR features learned from reference frame, 
and the residual features which represent complementary 
information are enhanced through an UNet structure shown 
in Fig. 1. The enhanced residual features are added to the 
HR features obtained by DBPN. In this way, the network 
can be forced to learn the details that are missing from the 
HR features obtained by the SISR method. Then, we get the 
first refinement output 0F . Finally, in preparation for the 
next refinement, the HR features are downsampled to the 
LR features through the second residual block. 

 
2.2. Deep enhancement of residual features 
 
The learned residual features contain the missing 
information in the results of the SISR method, which is the 
key to the VSR. Actually, the residual features mainly 
represent the image texture, edge, and other high-frequency  
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Table 1. The following table shows the average PSNR and SSIM results for all frames of each test video
 Bicubic EDVR Ours  Bicubic EDVR Ours 

000 35.996/0.9540 42.483/0.9862 43.558/0.9881 004 36.999/0.9501 40.732/0.9735 40.813/0.9742 
001 32.278/0.9430 38.430/0.9790 39.106/0.9801 005 37.439/0.9565 41.688/0.9795 41.694/0.9796 
002 36.502/0.9494 44.008/0.9878 44.519/0.9887 006 35.826/0.9502 40.609/0.9782 40.644/0.9781 
003 38.551/0.9715 43.678/0.9850 44.009/0.9855 007 33.401/0.9265 37.616/0.9656 37.748/0.9662 

Fig. 2. ×4 SR results on test set 001 ‘wharf’ scene. For better comparison, we select a frame from the test video 001 and 
partially zoom the region marked by green box to show more details.

Fig. 3. ×4 SR results on test set 004 ‘plane1’ scene.

Fig. 4. ×4 SR results on test set 007 ‘plane2’ scene. 
 

information. Such detailed information tends to be sparse. If 
the network layers are too deep, detailed features will be 
lost in the deep features along with the convolution 

operation. However, if the network layers are too shallow, it 
is likely that the features will not be deep enough to be fully 
expressed. 
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To balance this relationship, we chose an UNet structure 
which is deep enough to learn the deep residual features. As 
shown in Fig. 1, in the classical UNet structure, the features 
are first continuously downsampled and then upsampled to 
restore the original size. In this way, the structural 
characteristics of the features can be well guaranteed. 
Simultaneously, to ensure that the sparse detailed features 
are not lost in the deeper part of the network, we add a skip 
connection between the shallow layer and the deep layer, so 
the shallow features can also be well transmitted to the deep 
layer. Such an Unet structure can realize the deep 
expression of features while maintaining the detailed 
information well. 
 
2.3. Temporal attention mechanism 
 
Generally speaking, the reference frame closer to the target 
frame has a higher structural similarity with the target frame. 
But the reference frame farther away from the target frame 
may also contain rich detailed information. Obviously, the 
complementary information they provide is different so the 
network needs to learn the difference automatically. Simply 
concatenating features on channel dimension is equal to 
treating each channel fairly, which does not consider the 
different contributions of different temporal distance 
features to the recovery of target frames. After 
concatenating ( )0,1, ,5iF i =   on the channel dimension, 
the temporal attention is equivalent to the channel attention. 
So we chose the same plug-and-play channel attention 
module as in [7] for better integration. 
 

3. EXPERIMENTAL RESULTS 
 

Training Set. We have 10 Jilin-1 videos, as a result of the 
last two videos have a large reflective area. We only use the 
first 8 of them to build our training set. The original video 
frame size is 4096×2160. We crop each video into a video 
clip with a size of 640×640 in a non-overlapping way. Each 
video clip contains 100 consecutive frames, and a total of 
192 video clips are obtained to build the training set. 
Test Set. The test set contains 8 video clips. In the first 5 
videos, we crop 5 scenes respectively as our test set (000-
004). Each test video contains 100 consecutive frames with 
the frame size of 256×256. In addition, we crop 3 scenes 
(005-007) in the last two videos, each of them contains 200 
consecutive frames with the frame size of 640×640. 
Training details. Patch size is set to 64×64 and the 
minibatch size is set to 2. Adam with momentum to 0.9 is 
used as the optimizer. The initial learning rate is 10 5e −  
and decays by a factor of 10 for half of total 30 epochs. The 
deep learning framework is Pytorch1.2 and we take 3 days 
to train our model on 2 NVIDIA RTX 2080 Ti GPU. 
Results. We focus on ×4 SR. In the simulation experiment, 
PSNR and SSIM are used as our quantitative evaluation 
indexes. For the 8 test clips, we take the average PSNR and 

SSIM of all frames in each clip as the final result seen in 
Table. 1. It can be seen that our method achieves the best 
PSNR and SSIM results in all test sets. (The SSIM result on 
the test set 006 is only 0.0001 lower than the EDVR) 
In terms of qualitative results, we show the ×4 SR result of a 
certain frame and display its local details. EDVR and our 
method both restore more texture and detail information 
than the Bicubic method. In the scene of 'wharf' in Fig. 2, by 
noting the goods distributed in strips on the ground, it can 
be observed that our model can distinguish them well, while 
the result of EDVR model cannot. In the scene of 'plane1' 
shown in Fig. 3 and the scene of 'plane2' in Fig. 4, our 
model appears more sharpened on the edge of the wing of 
the plane and has a better recovery effect on the tail of the 
plane. In addition, EDVR produces obvious artifacts near 
the tail of the plane, and our model is very good at restoring 
the actual shape. 
 

4. CONCLUSION 
 
In this paper, a recurrent refinement network for satellite 
video data SR is proposed. Through recurrent refinement, 
complementary information enhanced by an UNet structure 
is continuously learned from reference frames and 
supplemented to SISR result to finally aggregate the SR 
frame corresponding to the target frame. The experiment on 
the video of Jilin-1 illustrates our model achieves the best 
results both quantitatively and qualitatively. 
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