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ABSTRACT 
 
Existing video super-resolution (VSR) methods usually 
merge the redundant temporal information along frames to 
achieve information enhancement, which naturally discards 
the spatial redundancy information. This paper proposes an 
intrinsic Graph Neural Network (GNN) framework for 
satellite VSR to fully explore the internal spatial prior while 
considering the temporal information in the video frame 
sequence. Firstly, a Multi-Scale Deformable convolution 
(MSD) is adopted to accurately model the spatial-temporal 
relationship between frames. Then, we search for k-nearest 
neighbors to construct the spatial graph and profoundly 
excavate the prior spatial information brought by patch 
recurrence. Finally, the spatial-temporal redundant 
information is integrated and complementary. Experiments 
on Jilin-1 satellite video demonstrate the effectiveness of 
our framework. 
 

Index Terms— Satellite video, super-resolution, graph 
neural network, deep learning 
 

1. INTRODUCTION 
 
Super-resolution (SR) is a classical low-level vision task, 
which can be categorized into single-image super-resolution 
(SISR) and video super-resolution (VSR) [1]. SISR recovers 
a high-resolution (HR) image from its corresponding low-
resolution (LR) image in the spatial domain, while VSR 
requires to exploit temporal information from multiple 
adjacent frames to reconstruct an HR target frame. 
Therefore, VSR is a more challenging ill-posed inverse 
problem than SISR since it is demanded to model the 
relationship of frames in the temporal dimension. 
Nowadays, most of the deep learning-based VSR methods 
carry out VSR in the following three steps: firstly, the 
spatial-temporal relationship can be described by aligning 
frames to the target frame, then the temporal information is 
aggregated by fusing the aligned frame, and finally, the HR 
target frame is reconstructed through an up-sampling 
operation. The alignment methods are represented by optical 
flow and kernel-based methods (such as deformable 
convolution and non-local). The optical flow-based method 

achieves explicit alignment at the sub-pixel level by using 
the optical flows between the target and adjacent frames to 
warp their corresponding adjacent frames. The kernel-based 
method implicitly realizes alignment at the feature level. For 
example, the deformable convolution-based approach 
estimates a convolution kernel where the sampling grid is 
deformed for each position to capture the redundant 
information that is brought by pixel motion. Since the 
receptive field of convolution is limited, the non-local idea 
is proposed to search for the global similar relationship 
between pixels. Thanks to the elaborate modeling of 
temporal information, the current deep learning-based VSR 
method has progressed considerably against the traditional 
method. However, since more attention has been paid to the 
redundant information in the temporal domain, the intrinsic 
spatial redundant information of the target frame is naturally 
neglected. Learning the spatial redundancy can complement 
the temporal redundancy information and guide the network 
to converge to the optimal solution under the constraint of 
the spatial prior. 
Many studies [2] indicate that there is internal patch-
recurrence in a natural image, which means a patch can be 
discovered in another position in the image with multiple 
highly similar patches. This inspired us to utilize the 
redundant information in these similar patches to fuse a 
more informative patch in the spatial dimension. Similar 
patches may present at a position farther away from the 
target patch and are distributed discretely. Therefore, the 
GNN naturally fits the task of modeling patch-recurrence. 
Specifically, each patch can be abstracted as a node of the 
graph, and the edge describes the similarity between nodes. 
Finally, we aggregate these patches with the weight of the 
edge. 
In satellite video, temporal information is difficult to be 
mined due to the scarcity of moving pixels in large and wide 
remote sensing images. In this case, the spatial prior of the 
target frame becomes particularly important. Besides, 
moving objects have various scales, which makes it more 
challenging to realize feature alignment. Therefore, we 
introduce a MSD alignment module to take into account 
multi-scale redundant information simultaneously. Finally, 
our network will deeply integrate temporal and spatial 
redundant information to achieve complementarity.   
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Fig. 1. The overall diagram of our intrinsic graph neural network. 

 
2. METHODOLOGY 

 
2.1. Overview 
 
The overall diagram of our intrinsic graph neural network is 
shown in Fig. 1. Five LR consecutive frames 1 5, ,LR LRI I    

are the input. The intermediate frame 3
LRI  is the target frame 

which need to be super-resolved (See red box), and the rest 
of the four frames are adjacent frames. Two branches are 
designed for spatial and temporal redundant information 
exploration. 
In the spatial branch, a graph is firstly constructed on the 
feature maps of the target frame. We searched for the k-
Nearest Neighbors (KNN) in the ×2 downsampling space 

2LR↓  to form the nodes, and the similarity between nodes 
constitutes the edges. In another branch, we adopt the Multi-
Scale Deformable convolution (MSD) alignment module 
proposed in our previous work [1] to realize feature 
alignment. As shown in Fig. 1., we conducted the spatial-
temporal redundant information fusion in subsequent two ×
2 up-sampling processes. 
 
2.2. Spatial Branch 
 
KNN Search. When searching k-nearest neighboring 
patches to query patch LRq , Euclidean distance between the 

neighboring patch 2LRn ↓  and query patch was calculated to 
measure the similarity, that is: 

 2 2
2

( , ) ,LR LRLR LRdist q n q n↓ ↓= −  (1) 

and the top k patches in similarity are selected as the nodes.  
Here we search patches in × 2 bicubic downsampling 
features 2LR↓  to better learn the representation from LR 
patch to HR patch. 
Nodes Reverse Mapping. After searching for k 
neighboring nodes with the same size as the query node in 

2LR↓ , we mapped the node positions back to the original 
LR space. The node size has also been increased by 2 times. 
These k HR patches ( )1:HR

in i k=  will be aggregated to 
obtain the HR patch corresponding to the query patch in 
latent HR feature space. 
Patches Aggregation. The edges between HR nodes were 
used as the weight guide for aggregation. The aggregated 
patch is denoted as q

HRg , here HR means that its size is 
twice of LRq . A three-layer convolution ( )F ⋅  was used to 
estimate the aggregation weight iw , namely: 

 ( )( )( )2exp , ,
LRLR

i iw F dist q n ↓
=  (2) 

Finally, the aggregated patched are written as: 

 
1

1 k
q HR
HR i i

i
g w n

δ =

= ⋅∑  (3) 

2.3. Temporal Branch 
 
MSD Alignment Module. We introduced the MSD 
Alignment Module to achieve implicit alignment at the 
feature level. All adjacent frames were aligned to the target 
frame. The details of the deformable convolution operation 
can be found in [1]. As shown in Fig. 1. The target frame 
feature (Marked red) and the downsampled HR features 
obtained in the spatial branch were merged to achieve the 
spatial-temporal redundant information fusion. 
TSA Fusion Module. To ensure that the spatial information 
of the target frame is the dominant in the fusion process, we 
dynamically considered the contribution of different spatial-
temporal information by introducing the TSA fusion module 
in EDVR. For details, please refer to [3]. 
 

3. EXPERIMENTAL RESULTS 
 

Data Set. As in [1], 8 of the 10 original videos of the Jilin-1 
satellite were cropped into 189 video clips with a size of 
640×640, and each clip contains 100 consecutive frames to  
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Table. 1. The average PSNR/SSIM in six test video clips. 

Method Scene-1 Scene-2 Scene-3 Scene-4 Scene-5 Scene-6 Overall 
Bicubic 29.71/0.8801 32.27/0.9252 28.59/0.8635 30.62/0.9009 32.47/0.9246 30.83/0.8989 30.75/0.8989 

DUF 30.83/0.9310 32.69/0.9567 29.24/0.9155 31.60/0.9385 33.73/0.9644 31.48/0.9369 31.60/0.9405 
TDAN 32.96/0.9392 36.11/0.9619 31.71/0.9254 34.07/0.9476 38.43/0.9726 34.17/0.9450 34.58/0.9485 
Ours 33.06/0.9393 36.27/0.9627 31.82/0.9262 34.42/0.9507 38.92/0.9749 34.44/0.9468 34.82/0.9501 

 

 
Fig. 2. Quantitative results in scene-1 and scene6. 

 
form our training set. We used the imresize function in 
MATLAB to get LR video clips through the Bicubic kernel. 
Six scenes were randomly cropped to form our test set in the 
remaining two original videos. 
Training details. This paper only conducts the ×4 SR. In 
the graph, k is set to 5, and the size of each query node is 3×
3, the search window when searching for neighboring nodes 
is limited to 30 × 30. LR video frames as input were 
randomly cropped into patches with a size of 80×80. Image 
flipping and random rotation were also used for data 
augmentation. The min-batch is set to 1, and the learning 
rate is 51 10−× . We adopted Adam as the optimizer and the 

1  loss function to guide the optimization of our network. 
Results. The quantitative results on the 6 test videos are 
shown in Table. 1. Our method is significantly ahead of the 
previous methods in PSNR/SSIM. The results illustrate the 
effectiveness of designing graph convolution branch to 
explore spatial redundancy information. 
The qualitative results on scene-1 and scene-6 are shown in 
Fig. 2. In scene-1, our method gets the clearest airplane 
outline. DUF [4] has serious distortions, and TDAN [5] 
predicts sharp boundary. In scene-6, we pay attention to the 
boundary of the building on the ground, and we can see that 
only our method gets the closest result to the ground true. 
The rest of methods have artifacts and fuzzy. This 
demonstrates that spatial redundancy information provides 
valuable spatial priors for recovering realistic images. 

 
4. CONCLUSION 

 
In this paper, we propose a satellite VSR framework based 
on graph convolution. The network can fully excavate 
spatial-temporal redundant information and perform well on 
jilin-1 satellite. 
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